Multiple degree reduction of Wang-Ball curves by using dual basis polynomials

被引:0
|
作者
机构
[1] [1,Dong, Zhiyuan
[2] Zhang, Li
[3] 1,Tan, Jieqing
[4] Xu, Guangfan
来源
Zhang, L. (hgdzli@126.com) | 2013年 / Binary Information Press, Flat F 8th Floor, Block 3, Tanner Garden, 18 Tanner Road, Hong Kong卷 / 10期
关键词
10;
D O I
10.12733/jics20101098
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] Geometric Degree Reduction of Wang-Ball Curves
    Hamza, Yusuf Fatihu
    Hamza, Mukhtar Fatihu
    Rababah, Abedallah
    Ibrahim, Salisu
    APPLIED COMPUTATIONAL INTELLIGENCE AND SOFT COMPUTING, 2023, 2023
  • [2] Hybrid chameleon swarm algorithm with multi-strategy: A case study of degree reduction for disk Wang-Ball curves
    Hu, Gang
    Yang, Rui
    Wei, Guo
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2023, 206 : 709 - 769
  • [3] Multi-degree reduction of Bezier curves with constraints, using dual Bernstein basis polynomials
    Wozny, Pawel
    Lewanowicz, Stanislaw
    COMPUTER AIDED GEOMETRIC DESIGN, 2009, 26 (05) : 566 - 579
  • [4] Degree reduction of interval generalized ball curves of Wang-Said type
    Tan, Jieqing
    Fang, Zhonghai
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2008, 20 (11): : 1483 - 1493
  • [5] Ameliorated Snake Optimizer-Based Approximate Merging of Disk Wang-Ball Curves
    Lu, Jing
    Yang, Rui
    Hu, Gang
    Hussien, Abdelazim G.
    BIOMIMETICS, 2024, 9 (03)
  • [6] Ameliorated Chameleon Algorithm-Based Shape Optimization of Disk Wang-Ball Curves
    Liang, Yan
    Yang, Rui
    Hu, Xianzhi
    Hu, Gang
    BIOMIMETICS, 2025, 10 (01)
  • [7] Good degree reduction of Bezier curves using Jacobi polynomials
    Kim, HJ
    Ahn, YJ
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2000, 40 (10-11) : 1205 - 1215
  • [8] Multiple degree reduction and elevation of Bezier curves using Jacobi-Bernstein basis transformations
    Rababah, Abedallah
    Lee, Byung-Gook
    Yoo, Jaechil
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2007, 28 (9-10) : 1179 - 1196
  • [9] Degree Reduction and Multiple Degree Reduction for the DP Curves
    Itsariyawanich, Kan
    Dejdumrong, Natasha
    ECTI-CON 2008: PROCEEDINGS OF THE 2008 5TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING/ELECTRONICS, COMPUTER, TELECOMMUNICATIONS AND INFORMATION TECHNOLOGY, VOLS 1 AND 2, 2008, : 45 - 48
  • [10] The dual basis functions for the generalized Ball basis of odd degree
    Othman, WAM
    Goldman, RN
    COMPUTER AIDED GEOMETRIC DESIGN, 1997, 14 (06) : 571 - 582