Systems of nonlinear Schrödinger equations. A survey

被引:0
|
作者
Ambrosetti, Antonio [1 ]
机构
[1] SISSA, Via Beirut, 2-4, 34014 Trieste
关键词
D O I
10.4171/rlm/535
中图分类号
学科分类号
摘要
引用
下载
收藏
页码:99 / 110
相关论文
共 50 条
  • [41] Šilnikov manifolds in coupled nonlinear Schrödinger equations
    Haller, G.
    Menon, G.
    Rothos, V.M.
    Physics Letters, Section A: General, Atomic and Solid State Physics, 1999, 263 (03): : 175 - 185
  • [42] Approximate Solutions of Perturbed Nonlinear Schr(?)dinger Equations
    CHENG Xue-Ping(1
    Communications in Theoretical Physics, 2007, 48 (08) : 227 - 231
  • [43] CONCENTRATION OF COUPLED CUBIC NONLINEAR SCHRDINGER EQUATIONS
    李晓光
    张健
    Applied Mathematics and Mechanics(English Edition), 2005, (10) : 117 - 122
  • [44] Soliton interactions in perturbed nonlinear Schrödinger equations
    Besley, James A.
    Miller, Peter D.
    Akhmediev, Nail N.
    2000, American Physical Society (61): : 7121 - 7133
  • [45] WKB Analysis for Nonlinear Schrödinger Equations with Potential
    Rémi Carles
    Communications in Mathematical Physics, 2007, 269
  • [46] Orbital Stability of Nonlinear Schrödinger–Kirchhoff Equations
    Enhao Lan
    Mediterranean Journal of Mathematics, 2022, 19
  • [47] Stability of nonlinear Schrödinger equations on modulation spaces
    Weichao Guo
    Jiecheng Chen
    Frontiers of Mathematics in China, 2014, 9 : 275 - 301
  • [48] Final State Problem for Systems of Cubic Nonlinear Schrödinger Equations in One Dimension
    Kota Uriya
    Annales Henri Poincaré, 2017, 18 : 2523 - 2542
  • [49] Blow-up results for systems of nonlinear Schrödinger equations with quadratic interaction
    Van Duong Dinh
    Luigi Forcella
    Zeitschrift für angewandte Mathematik und Physik, 2021, 72
  • [50] Multi-bump solitons to linearly coupled systems of nonlinear Schrödinger equations
    A. Ambrosetti
    E. Colorado
    D. Ruiz
    Calculus of Variations and Partial Differential Equations, 2007, 30 : 85 - 112