Systems of nonlinear Schrödinger equations. A survey

被引:0
|
作者
Ambrosetti, Antonio [1 ]
机构
[1] SISSA, Via Beirut, 2-4, 34014 Trieste
关键词
D O I
10.4171/rlm/535
中图分类号
学科分类号
摘要
引用
收藏
页码:99 / 110
相关论文
共 50 条
  • [1] Remarks on some systems of nonlinear Schrödinger equations
    Antonio Ambrosetti
    [J]. Journal of Fixed Point Theory and Applications, 2008, 4 : 35 - 46
  • [2] Systems of nonlinear Schrodinger equations. A survey
    Ambrosetti, Antonio
    [J]. RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2009, 20 (02) : 99 - 110
  • [3] Periodic wavetrains for systems of coupled nonlinear Schrödinger equations
    Kwok W Chow
    Derek WC Lai
    [J]. Pramana, 2001, 57 : 937 - 952
  • [4] On Turbulence in Nonlinear Schrödinger Equations
    S.B. Kuksin
    [J]. Geometric and Functional Analysis, 1997, 7 : 783 - 822
  • [5] On the hyperbolic nonlinear Schrödinger equations
    Saut, Jean-Claude
    Wang, Yuexun
    [J]. ADVANCES IN CONTINUOUS AND DISCRETE MODELS, 2024, 2024 (01):
  • [6] Incompressible and Compressible Limits of Coupled Systems of Nonlinear Schrödinger Equations
    Tai-Chia Lin
    Ping Zhang
    [J]. Communications in Mathematical Physics, 2006, 266 : 547 - 569
  • [7] A system of nonlinear evolution Schrödinger equations
    Sh. M. Nasibov
    [J]. Doklady Mathematics, 2007, 76 : 708 - 712
  • [8] Semiclassical States of Nonlinear Schrödinger Equations
    A. Ambrosetti
    M. Badiale
    S. Cingolani
    [J]. Archive for Rational Mechanics and Analysis, 1997, 140 : 285 - 300
  • [9] Lagrangian nonlocal nonlinear Schrödinger equations
    Velasco-Juan, M.
    Fujioka, J.
    [J]. Chaos, Solitons and Fractals, 2022, 156
  • [10] Hamiltonian formalism for nonlinear Schr?dinger equations
    Pazarci, Ali
    Turhan, Umut Can
    Ghazanfari, Nader
    Gahramanov, Ilmar
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 121