The role of redox and structure on grain growth in Mn-doped UO2

被引:0
|
作者
Murphy, Gabriel L. [1 ]
Bazarkina, Elena [2 ,3 ]
Rossberg, Andre [2 ,3 ]
Silva, Clara L. [2 ,3 ]
Amidani, Lucia [2 ,3 ]
Bukaemskiy, Andrey [1 ]
Thuemmler, Robert [1 ]
Klinkenberg, Martina [1 ]
Henkes, Maximilian [1 ]
Marquardt, Julien [4 ]
Lessing, Jessica [2 ]
Svitlyk, Volodymyr [2 ,3 ]
Hennig, Christoph [2 ,3 ]
Kvashnina, Kristina O. [2 ,3 ]
Huittinen, Nina [2 ,5 ]
机构
[1] Forschungszentrum Julich GmbH, Inst Fus Energy & Nucl Waste Management IFN 2, Julich, Germany
[2] Helmholtz Zentrum Dresden Rossendorf, Inst Resource Ecol, Dresden, Germany
[3] European Synchrotron, Rossendorf Beamline ESRF, Grenoble, France
[4] Goethe Univ Frankfurt, Inst Geowissensch, Frankfurt, Germany
[5] Free Univ Berlin, Inst Chem & Biochem, Berlin, Germany
关键词
CR2O3-DOPED UO2; CHROMIUM; SOLUBILITY; PROGRAM; PELLETS; FUEL;
D O I
10.1038/s43246-024-00714-x
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Mn-doped UO2 is considered a potential advanced nuclear fuel due to ameliorated microstructural grain growth compared to non-doped variants. However, recent experimental investigations have highlighted limitations in grain growth apparently arising from misunderstandings of its redox-structural chemistry. To resolve this, we use synchrotron X-ray diffraction and spectroscopy measurements supported by ab initio calculations to cross-examine the redox and structural chemistry of Mn-doped UO2 single crystal grains and ceramic specimens. Measurements reveal Mn enters the UO2 matrix divalently as (Mnx+2U1-x+4)O2-x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({{{Mn}}}_{x}<^>{+2}{{U}}_{1-x}<^>{+4}){{O}_{2-x}}$$\end{document} with the additional formation of fluorite Mn+2O in the bulk material. Extended X-ray absorption near edge structure measurements unveil that during sintering, the isostructural relationship between fluorite UO2 and Mn+2O results in inadvertent interaction and subsequent incorporation of diffusing U species within MnO, rather than neighbouring UO2 grains, inhibiting grain growth. The investigation consequently highlights the significance of considering total redox-structural chemistry of main and minor phases in advanced ceramic material design.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] ISOTHERMAL GRAIN-GROWTH KINETICS IN SINTERED UO2 PELLETS
    SINGH, RN
    JOURNAL OF NUCLEAR MATERIALS, 1977, 64 (1-2) : 174 - 178
  • [32] THE ROLE OF GRAIN-BOUNDARIES IN THE DISSOLUTION OF UO2 BY MOLTEN ZIRCALOY
    KIM, KT
    OLANDER, DR
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1987, 134 (8B) : C470 - C470
  • [33] Sintering behaviour of niobia-doped large grain UO2 pellet
    Harada, Y
    JOURNAL OF NUCLEAR MATERIALS, 1996, 238 (2-3) : 237 - 243
  • [34] Irradiation-induced creep in UO2: The role of grain boundaries
    Neilson, William D.
    Galvin, Conor O. T.
    Dillon, Shen J.
    Cooper, Michael W. D.
    Andersson, David A.
    PHYSICAL REVIEW MATERIALS, 2024, 8 (10):
  • [35] EFFECTS OF SINTERING PROCESSES ON THE DUPLEX GRAIN-STRUCTURE OF UO2
    SONG, KW
    SOHN, DS
    CHOO, WK
    JOURNAL OF NUCLEAR MATERIALS, 1993, 200 (01) : 41 - 49
  • [36] HIGH-TEMPERATURE HEAT-CAPACITIES OF UO2 AND DOPED UO2
    NAITO, K
    JOURNAL OF NUCLEAR MATERIALS, 1989, 167 : 30 - 35
  • [37] HEAT-CAPACITY AND ENTHALPY OF UO2 AND GADOLINIA-DOPED UO2
    MILLS, KC
    PONSFORD, FH
    RICHARDSON, MJ
    ZAGHINI, N
    FASSINA, P
    THERMOCHIMICA ACTA, 1989, 139 : 107 - 120
  • [38] STRUCTURE OF ANTIFERROMAGNETIC UO2
    CRACKNELL, AP
    PHYSICS LETTERS A, 1968, A 27 (07) : 426 - +
  • [39] Mechanistic grain growth model for fresh and irradiated UO2 nuclear fuel
    Tonks, Michael R.
    Simon, Pierre-Clement A.
    Hirschhorn, Jacob
    JOURNAL OF NUCLEAR MATERIALS, 2021, 543
  • [40] Role of electronic effects on the incorporation of Cr at a Σ5 grain boundary in UO2
    Hong, Minki
    Uberuaga, Blas P.
    Andersson, David A.
    Stanek, Christopher R.
    Phillpot, Simon R.
    Sinnott, Susan B.
    COMPUTATIONAL MATERIALS SCIENCE, 2013, 78 : 29 - 33