Performance analysis of an internal combustion engine with thermochemical recovery and high temperature proton exchange membrane fuel cell combined power generation system

被引:0
|
作者
Leng, Shuang [1 ]
Xu, Shiyi [1 ]
Li, Chengjie [1 ]
Ha, Chan [1 ]
Liu, Zekuan [1 ]
Qin, Jiang [1 ]
Wang, Zixuan [2 ]
Wang, Jingyi [3 ]
Chen, Zhengjian [4 ]
Liao, Mei [4 ]
机构
[1] Harbin Inst Technol, Sch Energy Sci & Engn, Harbin 150001, Peoples R China
[2] Harbin Inst Technol Shenzhen, Inst Intelligent Ocean Engn, Shenzhen 518055, Peoples R China
[3] Harbin Inst Technol, Sch Sci, Shenzhen 518055, Peoples R China
[4] Shenzhen Energy Grp Co Ltd, Shenzhen 518000, Peoples R China
基金
中国国家自然科学基金;
关键词
High pressure reforming; Thermochemical recovery of engine; High temperature proton exchange membrane; fuel cell; Combined generation system; ORGANIC RANKINE-CYCLE; WASTE-HEAT; EXERGOECONOMIC EVALUATION; EXHAUST-GAS; METHANOL; ENERGY; OPTIMIZATION; OPERATION; EMISSIONS; 2-STAGE;
D O I
10.1016/j.fuel.2024.133913
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In this paper, a co-generation system based on internal combustion engine (ICE) and high-temperature proton exchange membrane fuel cells (HTPEMFC) is proposed. Exhaust heat from the engine is recovered to provide the reforming reaction heat, and reformed fuel energy comprehensive utilization is accomplished through turbine and HTPEMFC based power generation. To evaluate how the system improves the power generation performance of ICE power systems, we establish system thermodynamic and economic models, and propose detailed performance evaluation indexes to discuss the system performance. As a result, the power generation efficiency the system is improved by 17.75 % compared with the engine alone, where 39.03 kW of energy is captured from the reforming gas physical energy through the turbine. The waste heat recovery and utilization efficiency of ICE is as high as 22.05 %, which gives excellent performance in waste heat recovery. Evidently, the system has certain advantages in developing a green and efficient ship power system. Moreover, HTPEMFC and Engine have a larger share in system exergy destruction. Finally, the optimal parameters of the system are determined double-objective optimization, the system power generation efficiency is 48.53 %, with a total cost per hour 61.90$/h.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Performance numerical analysis of thermoelectric generator sizing for integration into a high temperature proton exchange membrane fuel cell
    Shen, Yongting
    Kwan, Trevor Hocksun
    Yao, Qinghe
    APPLIED THERMAL ENGINEERING, 2020, 178
  • [32] Influence of operating temperature on cell performance and endurance of high temperature proton exchange membrane fuel cells
    Oono, Yuka
    Fukuda, Takashi
    Sounai, Atsuo
    Hori, Michio
    JOURNAL OF POWER SOURCES, 2010, 195 (04) : 1007 - 1014
  • [33] Combined startup strategy of high temperature proton exchange membrane fuel cells
    Huang, Yan
    Chu, Xiaotian
    Zhou, Hao
    Zhao, Huijing
    Xie, Yongliang
    Sun, Zuo-Yu
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 96 : 771 - 782
  • [34] Performance of incremental resistance MPPT based proton exchange membrane fuel cell power system
    Rezk, Hegazy
    PROCEEDINGS OF 2016 EIGHTEENTH INTERNATIONAL MIDDLE EAST POWER SYSTEMS CONFERENCE (MEPCON), 2016, : 199 - 205
  • [35] Study on the operating pressure effect on the performance of a proton exchange membrane fuel cell power system
    Qin, Yanzhou
    Du, Qing
    Fan, Mingzhe
    Chang, Yafei
    Yin, Yan
    ENERGY CONVERSION AND MANAGEMENT, 2017, 142 : 357 - 365
  • [36] Experimental evaluation of CO poisoning on the performance of a high temperature proton exchange membrane fuel cell
    Das, Susanta K.
    Reis, Antonio
    Berry, K. J.
    JOURNAL OF POWER SOURCES, 2009, 193 (02) : 691 - 698
  • [37] Performance evaluation of an integrated high-temperature proton exchange membrane fuel cell and absorption cycle system for power and heating/cooling cogeneration
    Guo, Xinru
    Zhang, Houcheng
    Zhao, Jiapei
    Wang, Fu
    Wang, Jiatang
    Miao, He
    Yuan, Jinliang
    ENERGY CONVERSION AND MANAGEMENT, 2019, 181 : 292 - 301
  • [38] Research on combined heat and power system based on solar-proton exchange membrane fuel cell
    Zhang, Jing
    Lu, Yan
    Xie, Guangcai
    Li, Sheng
    Wan, Zhongmin
    INTERNATIONAL JOURNAL OF GREEN ENERGY, 2022, 19 (04) : 410 - 423
  • [39] The combined effects of water transport on proton exchange membrane fuel cell performance
    Li Y.
    Lv H.
    Chemical Engineering Transactions, 2018, 65 : 691 - 696
  • [40] Thermodynamic analysis of a novel combined heating and power system based on low temperature solid oxide fuel cell (LT-SOFC) and high temperature proton exchange membrane fuel cell (HT-PEMFC)
    Guo, Xinru
    Guo, Yumin
    Wang, Jiangfeng
    Meng, Xin
    Deng, Bohao
    Wu, Weifeng
    Zhao, Pan
    ENERGY, 2023, 284