Low-velocity impact response of hybrid sheet moulding compound composite laminates

被引:1
|
作者
Pheysey, James [1 ,2 ]
Del Cuvillo, Ramon [3 ]
Naya, Fernando [3 ]
Pernas-Sanchez, Jesus [3 ]
De Cola, Francesco [2 ]
Martinez-Hergueta, Francisca [1 ]
机构
[1] Univ Edinburgh, Inst Infrastruct & Environm, Sch Engn, William Rankine Bldg, Edinburgh EH9 3FG, Scotland
[2] WAE Technol Ltd, Wantage OX12 0DQ, Oxon, England
[3] Univ Carlos III Madrid, Dept Continuum Mech & Struct Anal, Avda Univ 30, Leganes 28911, Madrid, Spain
基金
英国工程与自然科学研究理事会;
关键词
Sheet moulding compounds; Glass fibre; Carbon fibre; Hybrid composites; Impact performance; STRAIN; SMC; PERFORMANCE;
D O I
10.1016/j.compositesa.2024.108527
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This work presents a comprehensive study on the impact damage tolerance of Sheet Moulding Compounds (SMCs). The performance of glass, carbon and hybrid glass/carbon SMCs are compared by means of tensile, compression, low-velocity impact and compression after impact experiments. Damage analysis of the impacted laminates was performed by ultrasonic and X-ray methodologies. The glass SMC exhibited the highest damage tolerance in low-velocity impact with the smallest damaged area, crack density and loss in compression after impact (CAI) strength. On the other hand, the carbon SMC demonstrated superior in-plane stiffness and strength, but exhibited a large damaged area and crack density under impact. The hybrid SMC displayed an optimal compromise, exhibiting intermediate tensile in-plane performance and excellent damage tolerance at lower impact energy levels, but suffered from extensive delamination at the highest impact energy. Overall, the findings highlight the suitability of hybrid SMCs for structural applications with potential impact risks.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Experimental analysis and simulation of low-velocity impact damage of composite laminates
    Falco, O.
    Lopes, C. S.
    Sommer, D. E.
    Thomson, D.
    Avila, R. L.
    Tijs, B. H. A. H.
    COMPOSITE STRUCTURES, 2022, 287
  • [42] Numerical Simulation of Low-velocity Impact of Composite Laminates with Metal Layers
    Cui J.
    Guo Z.
    Zhu M.
    Li Y.
    Luan Y.
    Yang Q.
    Cailiao Daobao/Materials Reports, 2021, 35 (04): : 04150 - 04158
  • [43] Numerical simulation of low-velocity impact damage on stitched composite laminates
    State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
    Fuhe Cailiao Xuebao, 3 (715-724):
  • [44] A progressive damage model of composite laminates under low-velocity impact
    Zhou J.
    Wang S.
    Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University, 2021, 39 (01): : 37 - 45
  • [45] Research on low-velocity impact damage and influencing factors of composite laminates
    Xue, Lian
    Li, Weiping
    Liu, Jialei
    Xue, Caijun
    JOURNAL OF COMPOSITE MATERIALS, 2025,
  • [46] Static Residual Tensile Strength Response of GFRP Composite Laminates Subjected to Low-Velocity Impact
    Kim, Jong-Il
    Huh, Yong-Hak
    Kim, Yong-Hwan
    APPLIED SCIENCES-BASEL, 2020, 10 (16):
  • [47] Oblique Low-Velocity Impact Response and Damage Behavior of Carbon-Epoxy Composite Laminates
    Sun, Jin
    Huang, Linhai
    Zhao, Junhua
    MATERIALS, 2022, 15 (15)
  • [48] Low-velocity impact behavior and residual tensile strength of composite laminates
    Guan Q.
    Feng J.
    Xia P.
    Wu G.
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2021, 47 (06): : 1220 - 1232
  • [49] Research on low-velocity impact resistance of carbon fiber composite laminates
    Hou, Xin
    Aymerich, Francecso
    Feng, Dianshi
    POLYMER COMPOSITES, 2024, 45 (07) : 6125 - 6141
  • [50] Review and benchmark study on the analysis of low-velocity impact on composite laminates
    Bogenfeld, Raffael
    Kreikemeier, Janko
    Wille, Tobias
    ENGINEERING FAILURE ANALYSIS, 2018, 86 : 72 - 99