An improved biclustering algorithm for gene expression data

被引:0
|
作者
Jin, Sheng-Hua [1 ,2 ,3 ]
Hua, Li [1 ,2 ,3 ]
机构
[1] School of Computer Engineering, Huaiyin Institute of Technology, Huaian,Jiangsu,223003, China
[2] Huaian key Laboratory of the Study and Application of Internet of Things, Huaian,Jiangsu,223003, China
[3] Jiangsu “Internet of Things” Mobile Internet Technology Engineering laboratory, Huaian,Jiangsu,223003, China
来源
关键词
Random processes - Cluster computing - Clustering algorithms - Gene expression - Efficiency;
D O I
暂无
中图分类号
学科分类号
摘要
Cheng-Church (CC) biclustering algorithm is the popular algorithm for the gene expression data mining at present. Only find one biclustering can be found at one time and the biclustering that overlap each other can hardly be found when using this algorithm. This article puts forward a modified algorithm for the gene expression data mining that uses the middle biclustering result to conduct the randomization process, digging up more eligible biclustering data. It also raised a parallel computing method that uses the multi-core processor or cluster environment to improve efficiency. It is proved by experimental verification that the modified algorithm enhances the precision and efficiency of the gene expression data mining to a certain degree. © Jin and Hua.
引用
收藏
页码:1141 / 1144
相关论文
共 50 条
  • [21] Biclustering in gene expression data by tendency
    Liu, JZ
    Yang, J
    Wang, W
    2004 IEEE COMPUTATIONAL SYSTEMS BIOINFORMATICS CONFERENCE, PROCEEDINGS, 2004, : 182 - 193
  • [22] Bayesian biclustering of gene expression data
    Gu, Jiajun
    Liu, Jun S.
    BMC GENOMICS, 2008, 9 (Suppl 1)
  • [23] A Parallel Algorithm for Gene Expressing Data Biclustering
    Liu Wei
    Chen Ling
    JOURNAL OF COMPUTERS, 2008, 3 (10) : 71 - 77
  • [24] A New Biclustering Algorithm for Time-Series Gene Expression Data Analysis
    Xue, Yun
    Liao, Zhengling
    Li, Meihang
    Luo, Jie
    Hu, Xiaohui
    Luo, Guiyin
    Chen, Wen-Sheng
    2014 TENTH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS), 2014, : 268 - 272
  • [25] A Fast Algorithm for Gene Expressing Data Biclustering
    Liu Wei
    Chen Ling
    Qin Ling
    2008 ISECS INTERNATIONAL COLLOQUIUM ON COMPUTING, COMMUNICATION, CONTROL, AND MANAGEMENT, VOL 1, PROCEEDINGS, 2008, : 265 - +
  • [26] Improving an Evolutionary Multi-objective Algorithm for the Biclustering of Gene Expression Data
    Brizuela, Carlos A.
    Luna-Taylor, Jorge E.
    Martinez-Perez, Israel
    Guillen, Hugo A.
    Rodriguez, David O.
    Beltran-Verdugo, Armando
    2013 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2013, : 221 - 228
  • [27] ARBic: an all-round biclustering algorithm for analyzing gene expression data
    Liu, Xiangyu
    Yu, Ting
    Zhao, Xiaoyu
    Long, Chaoyi
    Han, Renmin
    Su, Zhengchang
    Li, Guojun
    NAR GENOMICS AND BIOINFORMATICS, 2023, 5 (01)
  • [28] Biclustering of Gene Expression Data Based on Binary Artificial Fish Swarm Algorithm
    Zhang, Rui
    Gao, Huacheng
    Liu, Yinqiu
    Lu, Yuanyuan
    Cui, Yan
    PROCEEDINGS OF 2018 5TH IEEE INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND INTELLIGENCE SYSTEMS (CCIS), 2018, : 247 - 251
  • [29] Performance Analysis of Gene Expression data using Biclustering Iterative Signature Algorithm
    Vengatesan, K.
    Singh, R. P.
    Bhaskar, Mahajan Sagar
    Padmanaban, Sanjeevikumar
    Ravishankar, T. Nadana
    Ramkumar, M.
    2017 INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING, INSTRUMENTATION AND CONTROL TECHNOLOGIES (ICICICT), 2017, : 7 - 11
  • [30] A Parallel Biclustering Algorithm for Gene Expressing Data
    Liu Wei
    Chen Ling
    Qu Hongyu
    Qin Ling
    ICNC 2008: FOURTH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, VOL 1, PROCEEDINGS, 2008, : 25 - +