Variational principles and meshless simulations for incompressible saturated viscoelastic porous media

被引:0
|
作者
Yang, Xiao [1 ]
Zheng, Yunying [1 ]
机构
[1] Shanghai Institute of Applied Mathematics and Mechanics, Department of Mechanics, Shanghai University, Shanghai 200444, China
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:137 / 144
相关论文
共 50 条
  • [41] Wave propagation in a fluid saturated incompressible porous medium
    Kumar, R
    Hundal, BS
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2003, 34 (04): : 651 - 665
  • [42] Viscoelastic boundary layer analysis of constant surface temperature plate embedded in saturated porous media
    Elayyan, Mutaz
    Maaitah, Hussein
    Quran, Omar
    Awad, Ahmad S. S.
    Duwairi, Hamzeh M. M.
    HEAT TRANSFER, 2023, 52 (06) : 4382 - 4400
  • [43] One-dimensional dynamics of saturated incompressible porous media: analytical solutions and influence of inertia terms
    Zhang, Yunpeng
    Pedroso, Dorival M.
    Ehlers, Wolfgang
    INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, 2016, 40 (18) : 2489 - 2513
  • [44] EXTREMUM-PRINCIPLES IN THE THEORY OF PLASTICITY FOR FLUID-SATURATED POROUS-MEDIA
    DEBOER, R
    KOWALSKI, SJ
    INGENIEUR ARCHIV, 1985, 55 (02): : 134 - 146
  • [45] Gas transport in saturated porous media at pore scale: Numerical simulations and hypergravity experiments
    Chen, Ruiqi
    Xu, Wenjie
    Chen, Yunmin
    Zhou, Chen
    Hu, Yingtao
    Liu, Pengfei
    Bate, Bate
    PHYSICS OF FLUIDS, 2025, 37 (04)
  • [46] Modeling the macroscopic behavior of saturated deformable porous media using direct numerical simulations
    Khan, Irfan
    Aidun, Cyrus K.
    INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2015, 71 : 74 - 82
  • [47] Combined Lattice Boltzmann and phase-field simulations for incompressible fluid flow in porous media
    Nestler, Britta
    Aksi, Ali
    Selzer, Michael
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2010, 80 (07) : 1458 - 1468
  • [48] A series solution for the effective properties of incompressible viscoelastic media
    Hoang-Duc, H.
    Bonnet, G.
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2014, 51 (02) : 381 - 391
  • [49] Generalized variational principles of the viscoelastic body with voids and their applications
    Sheng Dong-fa
    Cheng Chang-jun
    Fu Ming-fu
    Applied Mathematics and Mechanics, 2004, 25 (4) : 381 - 389
  • [50] Generalized variational principles of the viscoelastic body with voids and their applications
    Sheng, DF
    Cheng, CJ
    Fu, MF
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2004, 25 (04) : 381 - 389