Modular floating solar farms exhibit periodic open surface coverages due to the strip configuration of floating modules that support the photovoltaic (PV) panels on top. The associated modulations in the surface boundary layer and its turbulence characteristics are investigated in the present study under fully developed open channel flows. Different coverage percentages of 100 % (i.e. full cover), 60 %, 30 % and 0 % (i.e. open surface) were tested and measurements were obtained using particle image velocimetry. The results showed that the turbulence statistics are similar when the coverage decreases from 100 % to 60 %. However, with 30 %, both the turbulence intensities and Reynolds stresses increase substantially, reaching up to 50 % higher compared with the 100 % coverage, and the boundary layer thickness increases by more than 25 %. The local skin friction beneath the openings increases by 50 %. Analysis of spanwise vortices and premultiplied spectra indicates that the periodic coverage elongates the hairpin vortex packets and reduces their inclination angle, imposing limitations on sustainable coherent structures. At 30 %, flow detachment and smaller-scale vortices become dominant, reducing the mean velocities and increasing the turbulence intensities. Decreasing coverage percentage with flow detachment also shifts the energy transfer to higher wavenumbers, increasing energy dissipation and decreasing the bulk flow velocity. The kinetic energy and Reynolds stress carried by very large-scale motions decreases from 40 %-50 % with the 100 % and 60 % coverage to around 30 %-40 % with the 30 % coverage. Further research studies involving spanwise heterogeneity, higher Reynolds number and varying submergence of PV modules are needed for environmental considerations.