Data streaming architecture for visualizing cryptocurrency temporal data

被引:1
|
作者
Bandi, Ajay [1 ]
机构
[1] Northwest Missouri State University, Maryville,MO,64468, United States
关键词
Data reduction - Architecture - Digital storage - Data visualization - Mobile edge computing - Pipelines - Investments - Big data;
D O I
10.1007/978-981-16-0965-7_50
中图分类号
学科分类号
摘要
The utilization of data streaming is becoming essential in mobile computing applications to reduce latency and increase bandwidth. Vast amounts of data are generated continuously from the Web sites of stock markets and financial institutions. The data’s meta-analysis is critical for investors and needs to analyze in a short time. Traditionally, it requires several heterogeneous resources with high storage capacity to process and compute the data. Data streaming helps to capture, pipeline, and compute the data without storing it. This research aims to visualize the continuous updates to the cryptocurrency temporal data using aggregations and simple response functions. The cryptocurrency data is collected from multiple data sources. A macro-enabled Excel external live data from Web feature, C3.js, and Tableau tools are used to capture and pipeline the streamed data in real time to make better decisions. The results show that the visualizations are dynamically updating in the events of trades in cryptocurrencies over time. Data streaming researchers and practitioners benefit from extending the streaming architecture methodology and dataflow to other domains. © The Author(s).
引用
收藏
页码:651 / 661
相关论文
共 50 条
  • [41] A Smart City IoT Crowdsensing System Based on Data Streaming Architecture
    Labus, Aleksandra
    Radenkovic, Milos
    Neskovic, Stefan
    Popovic, Snezana
    Mitrovic, Svetlana
    [J]. MARKETING AND SMART TECHNOLOGIES, VOL 1, 2022, 279 : 319 - 328
  • [42] Streaming Convolutional Neural Network FPGA Architecture for RFSoC Data Converters
    Maclellan, Andrew
    Crockett, Louise H.
    Stewart, Robert W.
    [J]. 2023 21ST IEEE INTERREGIONAL NEWCAS CONFERENCE, NEWCAS, 2023,
  • [43] Statistical Data Reduction for Streaming Data
    Wu, Kesheng
    Lee, Dongeun
    Sim, Alex
    Choi, Jaesik
    [J]. 2017 NEW YORK SCIENTIFIC DATA SUMMIT (NYSDS), 2017,
  • [44] Visualizing epigenomic data
    Marx, Vivien
    [J]. NATURE METHODS, 2015, 12 (06) : 499 - 502
  • [45] VISUALIZING METEOROLOGICAL DATA
    SCHIAVONE, JA
    PAPATHOMAS, TV
    [J]. BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 1990, 71 (07) : 1012 - 1020
  • [46] Visualizing proximity data
    DeJordy, Rich
    Borgatti, Stephen P.
    Roussin, Chris
    Halgin, Daniel S.
    [J]. FIELD METHODS, 2007, 19 (03) : 239 - 263
  • [47] Visualizing epigenomic data
    Vivien Marx
    [J]. Nature Methods, 2015, 12 : 499 - 502
  • [48] Visualizing market data
    Healey, CG
    Wurman, PR
    [J]. IEEE INTERNET COMPUTING, 2001, 5 (02) : 88 - 88
  • [49] Visualizing simulation data
    Elvins, TT
    [J]. COMPUTER GRAPHICS-US, 1999, 33 (01): : 11 - 11
  • [50] Visualizing corporate data
    Eick, SG
    Fyock, DE
    [J]. AT&T TECHNICAL JOURNAL, 1996, 75 (01): : 74 - 86