Ground states for asymptotically periodic quasilinear Schrödinger equations with critical growth

被引:0
|
作者
机构
[1] Zhang, Hui
[2] Zhang, Fubao
来源
Zhang, F. (zhangfubao@seu.edu.cn) | 1600年 / Southeast University卷 / 29期
关键词
8;
D O I
10.3969/j.issn.1003-7985.2013.03.022
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [41] Singular Quasilinear Schrödinger Equations with Exponential Growth in Dimension Two
    Uberlandio B. Severo
    Manassés de Souza
    Diogo de S. Germano
    Mediterranean Journal of Mathematics, 2022, 19
  • [42] Normalized ground states for the Sobolev critical Schrödinger equation with at least mass critical growth
    Li, Quanqing
    Radulescu, Vicentiu D.
    Zhang, Wen
    NONLINEARITY, 2024, 37 (02)
  • [43] Asymptotical behavior of ground state solutions for critical quasilinear Schrödinger equation
    Yongpeng Chen
    Yuxia Guo
    Zhongwei Tang
    Frontiers of Mathematics in China, 2020, 15 : 21 - 46
  • [44] Normalized ground state solutions for critical growth Schrödinger equations with Hardy potential
    Fan, Song
    Li, Gui-Dong
    Tang, Chun-Lei
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2024,
  • [45] Stationary States for Nonlinear Schrödinger Equations with Periodic Potentials
    Reika Fukuizumi
    Andrea Sacchetti
    Journal of Statistical Physics, 2014, 156 : 707 - 738
  • [46] Ground States for Planar Generalized Quasilinear Schrödinger Equation with Choquard Nonlinearity
    Zhao, Wenting
    Huang, Xianjiu
    Chen, Jianhua
    Cheng, Bitao
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2025, 24 (01)
  • [47] Existence and concentration result for a quasilinear Schrödinger equation with critical growth
    Liuyang Shao
    Haibo Chen
    Zeitschrift für angewandte Mathematik und Physik, 2017, 68
  • [48] NONSMOOTH CRITICAL POINT THEOREMS AND ITS APPLICATIONS TO QUASILINEAR SCHRDINGER EQUATIONS
    李周欣
    沈尧天
    Acta Mathematica Scientia, 2016, 36 (01) : 73 - 86
  • [49] Soliton Solutions for Quasilinear Schrödinger Equations Involving Convolution and Critical Nonlinearities
    Sihua Liang
    Binlin Zhang
    The Journal of Geometric Analysis, 2022, 32
  • [50] Ground states for planar axially Schrödinger–Newton system with an exponential critical growth
    Wenbo Wang
    Quanqing Li
    Yongkun Li
    Boundary Value Problems, 2020