The design and fabrication of high toughness electromagnetic interference (EMI) shielding composite films with diminished reflection are an imperative task to solve electromagnetic pollution problem. Ternary MXene/ANF (aramid nanofibers)-MoS2 composite films with nacre-like layered structure here are fabricated after the introduction of MoS2 into binary MXene/ANF composite system. The introduction of MoS2 fulfills an impressive "kill three birds with one stone" improvement effect: lubrication toughening mechanical performance, reduction in secondary reflection pollution of electromagnetic wave, and improvement in the performance of photothermal conversion. After the introduction of MoS2 into binary MXene/ANF (mass ratio of 50:50), the strain to failure and tensile strength increase from 22.1 +/- 1.7% and 105.7 +/- 6.4 MPa and to 25.8 +/- 0.7% and 167.3 +/- 9.1 MPa, respectively. The toughness elevates from 13.0 +/- 4.1 to 26.3 +/- 0.8 MJ m(-3) (similar to 102.3%) simultaneously. And the reflection shielding effectiveness (SER) of MXene/ANF (mass ratio of 50:50) decreases similar to 10.8%. EMI shielding effectiveness (EMI SE) elevates to 41.0 dB (8.2-12.4 GHz); After the introduction of MoS2 into binary MXene/ANF (mass ratio of 60:40), the strain to failure increases from 18.3 +/- 1.9% to 28.1 +/- 0.7% (similar to 53.5%), the SER decreases similar to 22.2%, and the corresponding EMI SE is 43.9 dB. The MoS2 also leads to a more efficient photothermal conversion performance (similar to 45 to similar to 55 degrees C). Additionally, MXene/ANF-MoS2 composite films exhibit excellent electric heating performance, quick temperature elevation (15 s), excellent cycle stability (2, 2.5, and 3 V), and long-term stability (2520 s). Combining with excellent mechanical performance with high MXene content, electric heating performance, and photothermal conversion performance, EMI shielding ternary MXene/ANF-MoS2 composite films could be applied in many industrial areas. This work broadens how to achieve a balance between mechanical properties and versatility of composites in the case of high-function fillers.