Notes on m-quasi Yamabe gradient solitons

被引:0
|
作者
Poddar, Rahul [1 ]
Sharma, Ramesh [2 ]
Subramanian, Balasubramanian [1 ]
机构
[1] Prasanthi Nilayam, Sri Sathya Sai Inst Higher Learning, Puttaparthi 515134, India
[2] Univ New Haven, West Haven, CT 06516 USA
关键词
m-Quasi Yamabe gradient soliton; Yamabe flow; constant scalar curvature; Ricci tensor; CLASSIFICATION;
D O I
10.1007/s12044-024-00775-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We derive a divergence formula for an m-quasi Yamabe gradient soliton with finite m, and use it to give a short proof of the result "A compact m-quasi Yamabe gradient soliton (M-n,g), n >= 3, with finite m, has constant scalar curvature". We also show that an m-quasi Yamabe gradient soliton with finite m and positive scalar curvature, whose soliton vector field leaves the Ricci tensor invariant, is shrinking and has constant scalar curvature.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Notes on m-quasi Yamabe gradient solitons
    Rahul Poddar
    Ramesh Sharma
    Balasubramanian Subramanian
    [J]. Proceedings - Mathematical Sciences, 134
  • [2] Gradient Yamabe and Gradient m-Quasi Einstein Metrics on Three-dimensional Cosymplectic Manifolds
    Uday Chand De
    Sudhakar K. Chaubey
    Young Jin Suh
    [J]. Mediterranean Journal of Mathematics, 2021, 18
  • [3] A note on almost quasi Yamabe solitons and gradient almost quasi Yamabe solitons
    Ghosh, Sujit
    De, Uday Chand
    Yildiz, Ahmet
    [J]. HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2021, 50 (03): : 770 - 777
  • [4] Gradient Yamabe and Gradient m-Quasi Einstein Metrics on Three-dimensional Cosymplectic Manifolds
    De, Uday Chand
    Chaubey, Sudhakar K.
    Suh, Young Jin
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2021, 18 (03)
  • [5] On noncompact quasi Yamabe gradient solitons
    Wang, Lin Feng
    [J]. DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2013, 31 (03) : 337 - 348
  • [6] Generalized quasi Yamabe gradient solitons
    Neto, Benedito Leandro
    de Oliveira, Hudson Pina
    [J]. DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2016, 49 : 167 - 175
  • [7] ON A CLASSIFICATION OF THE QUASI YAMABE GRADIENT SOLITONS
    Huang, Guangyue
    Li, Haizhong
    [J]. METHODS AND APPLICATIONS OF ANALYSIS, 2014, 21 (03) : 379 - 390
  • [8] Almost quasi-Yamabe solitons and gradient almost quasi-yamabe solitons in paracontact geometry
    De, Krishnendu
    De, Uday Chand
    [J]. QUAESTIONES MATHEMATICAE, 2021, 44 (11) : 1429 - 1440
  • [9] A Note on Yamabe Solitons and Gradient Yamabe Solitons
    De, Krishnendu
    Ghosh, Sujit
    [J]. KYUNGPOOK MATHEMATICAL JOURNAL, 2022, 62 (01): : 179 - 191
  • [10] Almost quasi-Yamabe solitons and gradient almost quasi-Yamabe solitons in f-kenmotsu manifolds
    Ghosh, Sujit
    De, Uday Chand
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2021, 18 (11)