Gradient Yamabe and Gradient m-Quasi Einstein Metrics on Three-dimensional Cosymplectic Manifolds

被引:23
|
作者
De, Uday Chand [1 ]
Chaubey, Sudhakar K. [2 ]
Suh, Young Jin [3 ,4 ]
机构
[1] Univ Calcutta, Dept Pure Math, 35 Ballygaunge Circular Rd, Kolkata 700019, W Bengal, India
[2] Univ Technol & Appl Sci Shinas, Dept Informat Technol, Sect Math, POB 77, Shinas 324, Oman
[3] Kyungpook Natl Univ, Dept Math, Daegu 41566, South Korea
[4] Kyungpook Natl Univ, RIRCM, Daegu 41566, South Korea
基金
新加坡国家研究基金会;
关键词
Three-dimensional cosymplectic manifolds; gradient Yamabe solitons; gradient m-quasi Einstein solitons; product structures; 53B30; 53B50; 53C15; RICCI SOLITONS; COMPACT; CLASSIFICATION; TOPOLOGY; GEOMETRY;
D O I
10.1007/s00009-021-01720-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we characterize the gradient Yamabe and the gradient m-quasi Einstein solitons within the framework of three-dimensional cosymplectic manifolds.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Gradient Yamabe and Gradient m-Quasi Einstein Metrics on Three-dimensional Cosymplectic Manifolds
    Uday Chand De
    Sudhakar K. Chaubey
    Young Jin Suh
    [J]. Mediterranean Journal of Mathematics, 2021, 18
  • [2] Notes on m-quasi Yamabe gradient solitons
    Rahul Poddar
    Ramesh Sharma
    Balasubramanian Subramanian
    [J]. Proceedings - Mathematical Sciences, 134
  • [3] Notes on m-quasi Yamabe gradient solitons
    Poddar, Rahul
    Sharma, Ramesh
    Subramanian, Balasubramanian
    [J]. PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2024, 134 (01):
  • [4] Three dimensional m-quasi Einstein manifolds with degenerate Ricci tensor
    Kim, Jongsu
    Shin, Jinwoo
    [J]. MATHEMATISCHE NACHRICHTEN, 2019, 292 (08) : 1727 - 1750
  • [5] Yamabe solitons and gradient Yamabe solitons on three-dimensional N(k)-contact manifolds
    Suh, Young Jin
    De, Uday Chand
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2020, 17 (12)
  • [6] 3-Dimensional Trans-Sasakian Manifolds with Gradient Generalized Quasi-Yamabe and Quasi-Yamabe Metrics
    Siddiqi, Mohammed Danish
    Chaubey, Sudhakar Kumar
    Ramandi, Ghodratallah Fasihi
    [J]. KYUNGPOOK MATHEMATICAL JOURNAL, 2021, 61 (03): : 645 - 660
  • [7] m-quasi Einstein manifolds with subharmonic potential
    Shaikh, Absos Ali
    Mandal, Prosenjit
    Mondal, Chandan Kumar
    Ali, Akram
    [J]. FILOMAT, 2023, 37 (29) : 10125 - 10131
  • [8] On m-quasi Einstein almost Kenmotsu manifolds
    Venkatesha, Venkatesha
    Kumara, Huchchappa Aruna
    Naik, Devaraja Mallesha
    [J]. RIVISTA DI MATEMATICA DELLA UNIVERSITA DI PARMA, 2021, 12 (02): : 287 - 299
  • [9] Certain Classification Results on m-quasi Einstein Manifolds
    Poddar, Rahul
    Sharma, Ramesh
    Subramanian, Balasubramanian
    [J]. RESULTS IN MATHEMATICS, 2023, 78 (05)
  • [10] Certain Classification Results on m-quasi Einstein Manifolds
    Rahul Poddar
    Ramesh Sharma
    Balasubramanian Subramanian
    [J]. Results in Mathematics, 2023, 78