An inverse problem of determining the parameters in diffusion equations by using fractional physics-informed neural networks

被引:1
|
作者
Srati, M. [1 ]
Oulmelk, A. [2 ]
Afraites, L. [1 ]
Hadri, A. [3 ]
Zaky, M. A. [4 ,5 ,6 ]
Aldraiweesh, A. [5 ]
Hendy, A. S. [7 ,8 ,9 ]
机构
[1] Sultan Moulay Slimane Univ, EMI, FST Beni Mellal, Beni Mellal, Morocco
[2] Abdelmalek Essaadi Univ, Lab Math & Applicat, FST Tanger, Tetouan, Morocco
[3] Ibnou Zohr Univ, Lab SIV, Agadir, Morocco
[4] Imam Mohammad Ibn Saud Islamic Univ IMSIU, Coll Sci, Dept Math & Stat, Riyadh, Saudi Arabia
[5] King Saud Univ, Coll Educ, Educ Technol Dept, Riyadh, Saudi Arabia
[6] Natl Res Ctr, Dept Appl Math, Cairo 12622, Egypt
[7] Ural Fed Univ, Inst Nat Sci & Math, Dept Computat Math & Comp Sci, 19 Mira St, Ekaterinburg 620002, Russia
[8] Western Caspian Univ, Dept Mech & Math, Baku 1001, Azerbaijan
[9] Benha Univ, Fac Sci, Dept Math & Comp Sci, Banha 13511, Egypt
关键词
Inverse parameter problem; Time-fractional diffusion equations; Physics-informed neural network method; The gradient descent method; The alternating direction multiplier method; DeepONets method;
D O I
10.1016/j.apnum.2024.10.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this study, we address an inverse problem in nonlinear time-fractional diffusion equations using a deep neural network. The challenge arises from the equation's nonlinear behavior, the involvement of time-based fractional Caputo derivatives, and the need to estimate parameters influenced by space or the solution of the fractional PDE. Our solution involves a fractional physics-informed neural network (FPINN). Initially, we use FPINN to solve a straightforward problem. Then, we apply FPINN to the inverse problem of estimating parameter and model non- linearity. For the inverse problem, we enhance our method by including the mean square error of final observations in the FPINN's cost function. This adjustment helps effectively in tackling the unique challenges of the time-fractional diffusion equation. Numerical tests involving regular and singular examples demonstrate the effectiveness of the physics-informed neural network approach in accurately recovering parameters. We reinforce this finding through a numerical comparison with alternative methods such as the alternating direction multiplier method (ADMM), the gradient descent, and the DeepONets (deep operator networks) method.
引用
收藏
页码:189 / 213
页数:25
相关论文
共 50 条
  • [21] Sensitivity analysis using Physics-informed neural networks
    Hanna, John M.
    Aguado, Jose, V
    Comas-Cardona, Sebastien
    Askri, Ramzi
    Borzacchiello, Domenico
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 135
  • [22] Predicting Voltammetry Using Physics-Informed Neural Networks
    Chen, Haotian
    Katelhon, Enno
    Compton, Richard G.
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2022, 13 (02): : 536 - 543
  • [23] Discontinuity Computing Using Physics-Informed Neural Networks
    Liu, Li
    Liu, Shengping
    Xie, Hui
    Xiong, Fansheng
    Yu, Tengchao
    Xiao, Mengjuan
    Liu, Lufeng
    Yong, Heng
    JOURNAL OF SCIENTIFIC COMPUTING, 2024, 98 (01)
  • [24] Discontinuity Computing Using Physics-Informed Neural Networks
    Li Liu
    Shengping Liu
    Hui Xie
    Fansheng Xiong
    Tengchao Yu
    Mengjuan Xiao
    Lufeng Liu
    Heng Yong
    Journal of Scientific Computing, 2024, 98
  • [25] The Role of Adaptive Activation Functions in Fractional Physics-Informed Neural Networks
    Coelho, C.
    Costa, M. Fernanda P.
    Ferras, L. L.
    INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2022, ICNAAM-2022, 2024, 3094
  • [26] Quantum Physics-Informed Neural Networks
    Trahan, Corey
    Loveland, Mark
    Dent, Samuel
    ENTROPY, 2024, 26 (08)
  • [27] Separable Physics-Informed Neural Networks
    Cho, Junwoo
    Nam, Seungtae
    Yang, Hyunmo
    Yun, Seok-Bae
    Hong, Youngjoon
    Park, Eunbyung
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [28] Modelling Lane-Emden type equations using Physics-Informed Neural Networks
    Baty, Hubert
    ASTRONOMY AND COMPUTING, 2023, 44
  • [29] A General Method for Solving Differential Equations of Motion Using Physics-Informed Neural Networks
    Zhang, Wenhao
    Ni, Pinghe
    Zhao, Mi
    Du, Xiuli
    APPLIED SCIENCES-BASEL, 2024, 14 (17):
  • [30] Fractional physics-informed neural networks for time-fractional phase field models
    Wang, Shupeng
    Zhang, Hui
    Jiang, Xiaoyun
    NONLINEAR DYNAMICS, 2022, 110 (03) : 2715 - 2739