An inverse problem of determining the parameters in diffusion equations by using fractional physics-informed neural networks

被引:1
|
作者
Srati, M. [1 ]
Oulmelk, A. [2 ]
Afraites, L. [1 ]
Hadri, A. [3 ]
Zaky, M. A. [4 ,5 ,6 ]
Aldraiweesh, A. [5 ]
Hendy, A. S. [7 ,8 ,9 ]
机构
[1] Sultan Moulay Slimane Univ, EMI, FST Beni Mellal, Beni Mellal, Morocco
[2] Abdelmalek Essaadi Univ, Lab Math & Applicat, FST Tanger, Tetouan, Morocco
[3] Ibnou Zohr Univ, Lab SIV, Agadir, Morocco
[4] Imam Mohammad Ibn Saud Islamic Univ IMSIU, Coll Sci, Dept Math & Stat, Riyadh, Saudi Arabia
[5] King Saud Univ, Coll Educ, Educ Technol Dept, Riyadh, Saudi Arabia
[6] Natl Res Ctr, Dept Appl Math, Cairo 12622, Egypt
[7] Ural Fed Univ, Inst Nat Sci & Math, Dept Computat Math & Comp Sci, 19 Mira St, Ekaterinburg 620002, Russia
[8] Western Caspian Univ, Dept Mech & Math, Baku 1001, Azerbaijan
[9] Benha Univ, Fac Sci, Dept Math & Comp Sci, Banha 13511, Egypt
关键词
Inverse parameter problem; Time-fractional diffusion equations; Physics-informed neural network method; The gradient descent method; The alternating direction multiplier method; DeepONets method;
D O I
10.1016/j.apnum.2024.10.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this study, we address an inverse problem in nonlinear time-fractional diffusion equations using a deep neural network. The challenge arises from the equation's nonlinear behavior, the involvement of time-based fractional Caputo derivatives, and the need to estimate parameters influenced by space or the solution of the fractional PDE. Our solution involves a fractional physics-informed neural network (FPINN). Initially, we use FPINN to solve a straightforward problem. Then, we apply FPINN to the inverse problem of estimating parameter and model non- linearity. For the inverse problem, we enhance our method by including the mean square error of final observations in the FPINN's cost function. This adjustment helps effectively in tackling the unique challenges of the time-fractional diffusion equation. Numerical tests involving regular and singular examples demonstrate the effectiveness of the physics-informed neural network approach in accurately recovering parameters. We reinforce this finding through a numerical comparison with alternative methods such as the alternating direction multiplier method (ADMM), the gradient descent, and the DeepONets (deep operator networks) method.
引用
收藏
页码:189 / 213
页数:25
相关论文
共 50 条
  • [1] Inverse analysis for estimating geotechnical parameters using physics-informed neural networks
    Ito, Shinichi
    Fukunaga, Ryusei
    Sako, Kazunari
    SOILS AND FOUNDATIONS, 2024, 64 (06)
  • [2] Inverse resolution of spatially varying diffusion coefficient using physics-informed neural networks
    Thakur, Sukirt
    Esmaili, Ehsan
    Libring, Sarah
    Solorio, Luis
    Ardekani, Arezoo M.
    PHYSICS OF FLUIDS, 2024, 36 (08)
  • [3] fPINNs: FRACTIONAL PHYSICS-INFORMED NEURAL NETWORKS
    Pang, Guofei
    Lu, Lu
    Karniadakis, George E. M.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (04): : A2603 - A2626
  • [4] Physics-Informed Neural Networks for Inverse Electromagnetic Problems
    Baldan, Marco
    Di Barba, Paolo
    Lowther, David A.
    IEEE TRANSACTIONS ON MAGNETICS, 2023, 59 (05)
  • [5] Physics-Informed Neural Networks for Inverse Electromagnetic Problems
    Baldan, Marco
    Di Barba, Paolo
    Lowther, David A.
    TWENTIETH BIENNIAL IEEE CONFERENCE ON ELECTROMAGNETIC FIELD COMPUTATION (IEEE CEFC 2022), 2022,
  • [6] On the Monotonicity and Positivity of Physics-Informed Neural Networks for Highly Anisotropic Diffusion Equations
    Zhang, Wenjuan
    Al Kobaisi, Mohammed
    ENERGIES, 2022, 15 (18)
  • [7] PHYSICS-INFORMED NEURAL NETWORK FOR INVERSE HEAT CONDUCTION PROBLEM
    Qian, Weijia
    Hui, Xin
    Wang, Bosen
    Zhang, Zongwei
    Lin, Yuzhen
    Yang, Siheng
    HEAT TRANSFER RESEARCH, 2023, 54 (04) : 65 - 76
  • [8] Inverse modeling of nonisothermal multiphase poromechanics using physics-informed neural networks
    Amini, Danial
    Haghighat, Ehsan
    Juanes, Ruben
    JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 490
  • [9] Physics-informed neural networks for inverse problems in supersonic flows
    Jagtap, Ameya D.
    Mao, Zhiping
    Adams, Nikolaus
    Karniadakis, George Em
    JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 466
  • [10] Physics-Informed Neural Networks for Inverse Problems in Structural Dynamics
    Teloli, Rafael de O.
    Bigot, Mael
    Coelho, Lucas
    Ramasso, Emmanuel
    Tittarelli, Roberta
    Le Moal, Patrice
    Ouisse, Morvan
    NONDESTRUCTIVE CHARACTERIZATION AND MONITORING OF ADVANCED MATERIALS, AEROSPACE, CIVIL INFRASTRUCTURE, AND TRANSPORTATION XVIII, 2024, 12950