Numerical methods for the frictional contact problem

被引:0
|
作者
Acary, Vincent [1 ]
Brogliato, Bernard [1 ]
机构
[1] INRIA, Team-project BIPOP Inovallée, 655 avenue de l'Europe Montbonnot, 38334 Saint-Ismier, France
关键词
D O I
10.1007/978-3-540-75392-6_13
中图分类号
学科分类号
摘要
引用
收藏
页码:403 / 440
相关论文
共 50 条
  • [21] Numerical Methods for Frictional Contact of Multi-rigid-body with Redundant Constraints
    Gao, Haitao
    Zhang, Zhisheng
    Liu, Jun
    Lu, Guang
    Shi, Jinfei
    INTELLIGENT ROBOTICS AND APPLICATIONS, PROCEEDINGS, 2009, 5928 : 571 - 579
  • [22] Coupling of finite elements and boundary elements methods for study of the frictional contact problem
    Guyot, N
    Kosior, F
    Maurice, G
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2000, 181 (1-3) : 147 - 159
  • [23] Unified analysis of discontinuous Galerkin methods for frictional contact problem with normal compliance
    Porwal, Kamana
    Wadhawan, Tanvi
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2023, 434
  • [24] C0 DISCONTINUOUS GALERKIN METHODS FOR A PLATE FRICTIONAL CONTACT PROBLEM
    Wang, Fei
    Zhang, Tianyi
    Han, Weimin
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2019, 37 (02) : 184 - 200
  • [25] Optimal Control of a Frictional Contact Problem
    Arezki TOUZALINE
    Acta Mathematicae Applicatae Sinica, 2015, 31 (04) : 991 - 1000
  • [26] On a frictional contact problem with adhesion in piezoelectricity
    Selmani, Mohamed
    Selmani, Lynda
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2016, 23 (02) : 263 - 284
  • [27] A frictional contact problem with wear diffusion
    Piotr Kalita
    Pawel Szafraniec
    Meir Shillor
    Zeitschrift für angewandte Mathematik und Physik, 2019, 70
  • [28] A frictional contact problem with wear diffusion
    Kalita, Piotr
    Szafraniec, Pawel
    Shillor, Meir
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2019, 70 (04):
  • [29] A FRICTIONAL CONTACT PROBLEM WITH DAMAGE IN VISCOPLASTICITY
    Kasri, A.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2021, 18 : 255 - 281
  • [30] Optimal Control of a Frictional Contact Problem
    Touzaline, Arezki
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2015, 31 (04): : 991 - 1000