Stable structure and oxygen-rich vacancy assist NH4V4O10 to become a high-performance aqueous zinc-ion battery cathode material

被引:3
|
作者
Pan, Luyao [1 ]
Sun, Yangang [1 ]
Yao, Song [1 ]
Zhang, Yu [1 ]
Wen, Zhaoxia [1 ]
机构
[1] Shanghai Univ Engn Sci, Coll Chem & Chem Engn, Shanghai 201620, Peoples R China
关键词
Aqueous zinc-ion batteries; Cathode; Ascorbic acid; NH; 4; V; O; 10; AMMONIUM VANADATE; NANOSHEETS; OXIDES;
D O I
10.1016/j.jallcom.2024.177949
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Ammonium vanadate (NH4V4O10) is an emerging cathode material for aqueous zinc-ion batteries (AZIBs), gaining recognition for V element multivalent and budget. However, Zn2 + exhibit robust coulombic bonds with the lattice structure, poor ion transport and cycling stability, and narrow layer spacing limit its further application. In this study, we prepared an efficient cathode designed for AZIBs by inserting ascorbic acid (AA) into the interlayer of NH4V4O10 (AANVO). The insertion of AA increases the distance between layers and enhances the stability of the material's structure, provided a large interlayer channel for the diffusion of Zn2+ and successfully partially replaced NH4+ in NH4V4O10, alleviating the irreversible deamination reaction. Furthermore, the doping of AA reduces the crystallinity of NVO, increases the oxygen vacancies, and accelerates the ion and charge transfer kinetics, resulting in excellent electrochemical properties. The findings reveal that AANVO exhibits a remarkable charge capacity of 638 mAh g- 1 at 0.1 A g-1, and it maintains 86.6 % of this capacity after 1000 cycles when subjected to 10 A g-1.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Harnessing oxygen vacancy in V2O5 as high performing aqueous zinc-ion battery cathode
    Qi, Zichen
    Xiong, Ting
    Chen, Tao
    Shi, Wen
    Zhang, Mingchang
    Ang, Zhi Wei Javier
    Fan, Huiqing
    Xiao, Hong
    Lee, Wee Siang Vincent
    Xue, Junmin
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 870
  • [22] Chitosan-induced NH4V4O10 hierarchical hybrids as high-capacity cathode for aqueous zinc ion batteries
    Li, Yaotong
    Zhao, Chunru
    Abdukader, Abdukayum
    Wu, Xiang
    RSC ADVANCES, 2024, 14 (14) : 9594 - 9601
  • [23] Electroactivation-induced spinel ZnV2O4 as a high-performance cathode material for aqueous zinc-ion battery
    Liu, Yi
    Li, Chang
    Xu, Jia
    Ou, Mingyang
    Fang, Chun
    Sun, Shixiong
    Qiu, Yuegang
    Peng, Jian
    Lu, Gongchang
    Li, Qing
    Han, Jiantao
    Huang, Yunhui
    NANO ENERGY, 2020, 67
  • [24] Suppressing the skeleton decomposition in Ti-doped NH4V4O10 for durable aqueous zinc ion battery
    He, Dingchao
    Peng, Yuqi
    Ding, Youcai
    Xu, Xiaoxiao
    Huang, Yang
    Li, Zhaoqian
    Zhang, Xianxi
    Hu, Linhua
    JOURNAL OF POWER SOURCES, 2021, 484
  • [25] Porous cubic MnCo 2 O 4 as a high-performance cathode material for aqueous zinc-ion batteries
    Wu, Yujuan
    Hu, Yingying
    Zhao, Pei
    Zhang, Huihui
    Wang, Ruilin
    Mao, Yiyang
    Wang, Mengbo
    Yang, Ziwen
    Zhang, Xinlei
    Ding, Kun
    Guo, Yong
    Zhang, Qianjun
    Xu, Lianyi
    Wang, Baofeng
    SOLID STATE IONICS, 2024, 411
  • [26] NH4V4O10 micro-flowers as cathode material for high performance hybrid magnesium-lithium-ion batteries
    Chen, Qingqing
    Xia, Qing
    Xu, Yuxing
    Wang, Pengfei
    Tan, Qiangqiang
    MATERIALS LETTERS, 2019, 247 : 178 - 181
  • [27] SrV4O9 microflowers as high performance cathode for aqueous zinc-ion battery
    Yang, Shide
    Zhang, Yan
    Du, Yehong
    Wang, Zhe
    Song, Binxin
    Wang, Xinyu
    MATERIALS LETTERS, 2023, 331
  • [28] SrV4O9 microflowers as high performance cathode for aqueous zinc-ion battery
    Yang, Shide
    Zhang, Yan
    Du, Yehong
    Wang, Zhe
    Song, Binxin
    Wang, Xinyu
    MATERIALS LETTERS, 2023, 331
  • [29] MnO2@Co3O4 heterostructure composite as high-performance cathode material for rechargeable aqueous zinc-ion battery
    Sun, Jianhang
    Zhang, Pengchao
    Ba, Ying
    Sun, Juncai
    IONICS, 2023, 29 (05) : 1913 - 1921
  • [30] MnO2@Co3O4 heterostructure composite as high-performance cathode material for rechargeable aqueous zinc-ion battery
    Jianhang Sun
    Pengchao Zhang
    Ying Ba
    Juncai Sun
    Ionics, 2023, 29 : 1913 - 1921