Stable structure and oxygen-rich vacancy assist NH4V4O10 to become a high-performance aqueous zinc-ion battery cathode material

被引:3
|
作者
Pan, Luyao [1 ]
Sun, Yangang [1 ]
Yao, Song [1 ]
Zhang, Yu [1 ]
Wen, Zhaoxia [1 ]
机构
[1] Shanghai Univ Engn Sci, Coll Chem & Chem Engn, Shanghai 201620, Peoples R China
关键词
Aqueous zinc-ion batteries; Cathode; Ascorbic acid; NH; 4; V; O; 10; AMMONIUM VANADATE; NANOSHEETS; OXIDES;
D O I
10.1016/j.jallcom.2024.177949
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Ammonium vanadate (NH4V4O10) is an emerging cathode material for aqueous zinc-ion batteries (AZIBs), gaining recognition for V element multivalent and budget. However, Zn2 + exhibit robust coulombic bonds with the lattice structure, poor ion transport and cycling stability, and narrow layer spacing limit its further application. In this study, we prepared an efficient cathode designed for AZIBs by inserting ascorbic acid (AA) into the interlayer of NH4V4O10 (AANVO). The insertion of AA increases the distance between layers and enhances the stability of the material's structure, provided a large interlayer channel for the diffusion of Zn2+ and successfully partially replaced NH4+ in NH4V4O10, alleviating the irreversible deamination reaction. Furthermore, the doping of AA reduces the crystallinity of NVO, increases the oxygen vacancies, and accelerates the ion and charge transfer kinetics, resulting in excellent electrochemical properties. The findings reveal that AANVO exhibits a remarkable charge capacity of 638 mAh g- 1 at 0.1 A g-1, and it maintains 86.6 % of this capacity after 1000 cycles when subjected to 10 A g-1.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Defect engineering and morphology adjustment assist NH4V4O10 to be a high-performance aqueous zinc ion battery cathode
    Yao, Song
    Sun, Yangang
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (28) : 17213 - 17221
  • [2] Pre-removing partial ammonium ion induces vanadium vacancy assist NH4V4O10 as a high-performance aqueous zinc ion battery cathode
    Yao, Song
    Sun, Yangang
    Pan, Luyao
    APPLIED SURFACE SCIENCE, 2024, 672
  • [3] Magnesium Ion Doping and Micro-Structural Engineering Assist NH4V4O10 as a High-Performance Aqueous Zinc Ion Battery Cathode
    Wang, Xuri
    Wang, Yinglei
    Naveed, Ahmad
    Li, Guotai
    Zhang, Hanwei
    Zhou, Yu
    Dou, Aichun
    Su, Mingru
    Liu, Yunjian
    Guo, Ruiqiang
    Li, Cheng Chao
    ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (48)
  • [4] Synergetic impact of oxygen and vanadium defects endows NH4V4O10 cathode with superior performances for aqueous zinc-ion battery
    Li, Shijia
    Xu, Xieyu
    Chen, Weixin
    Zhao, Jingwen
    Wang, Kai
    Shen, Jiasen
    Chen, Xue
    Xia, Lu
    Jiao, Xingxing
    Liu, Yangyang
    Bai, Ying
    ENERGY STORAGE MATERIALS, 2024, 65
  • [5] Deficiency and surface engineering boosting electronic and ionic kinetics in NH4V4O10 for high-performance aqueous zinc-ion battery
    Cui, Fuhan
    Wang, Dashuai
    Hu, Fang
    Yu, Xin
    Guan, Chao
    Song, Guihong
    Xu, Feng
    Zhu, Kai
    ENERGY STORAGE MATERIALS, 2022, 44 : 197 - 205
  • [6] Oxygen Vacancies on NH4V4O10 Accelerate Ion and Charge Transfer in Aqueous Zinc-Ion Batteries
    Peng, Yuqi
    Mo, Li'e
    Wei, Tingting
    Wang, Yifan
    Zhang, Xianxi
    Li, Zhaoqian
    Huang, Yang
    Yang, Guang
    Hu, Linhua
    SMALL, 2024, 20 (11)
  • [7] In situ aniline polymerization during NH4V4O10 lattice formation achieves a high-performance hybrid cathode for aqueous zinc-ion batteries
    Liu, Chang
    Meng, Ziqiao
    Cai, Yuwu
    Wei, Chenglong
    Xu, Jingjing
    Chen, Yuming
    Wang, Xinlei
    Zhou, Jie
    CHEMICAL COMMUNICATIONS, 2024, 60 (99) : 14838 - 14841
  • [8] Al3+intercalated NH4V4O10 nanosheet on carbon cloth for high-performance aqueous zinc-ion batteries
    Wang, Ke
    Yuan, Ruilong
    Li, Mengjun
    Huang, Ying
    Ai, Wei
    Du, Zhuzhu
    He, Pan
    Wang, Binwu
    CHEMICAL ENGINEERING JOURNAL, 2023, 471
  • [9] Intercalation Mechanism of the Ammonium Vanadate (NH4V4O10) 3D Decussate Superstructure as the Cathode for High-Performance Aqueous Zinc-Ion Batteries
    Sun, Rui
    Qin, Zhaoxia
    Liu, Xinlong
    Wang, Caihong
    Lu, Shengjun
    Zhang, Yufei
    Fan, Haosen
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2021, 9 (35): : 11769 - 11777
  • [10] NH4V4O10 nanobelts as a novel cathode material for aqueous nickel ion batteries
    Wang, Yuwei
    Zhang, Yue
    You, Junhua
    Hu, Fang
    Zhang, Hangzhou
    MATERIALS LETTERS, 2023, 341