Outlier detection of multivariate data via the maximization of the cumulant generating function

被引:0
|
作者
Cesarone, Francesco [1 ]
Giacometti, Rosella [2 ]
Ricci, Jacopo Maria [1 ]
机构
[1] Roma Tre University - Department of Business Studies, Italy
[2] University of Bergamo - Department of Management, Italy
关键词
Multivariant analysis - Normal distribution - Principal component analysis - Statistics;
D O I
10.1016/j.cam.2024.116457
中图分类号
学科分类号
摘要
In this paper, we propose an outlier detection algorithm for multivariate data based on their projections on the directions that maximize the Cumulant Generating Function (CGF). We prove that CGF is a convex function, and we characterize the CGF maximization problem on the unit n-circle as a concave minimization problem. Then, we show that the CGF maximization approach can be interpreted as an extension of the standard principal component technique. Therefore, for validation and testing, we provide a thorough comparison of our methodology with two other projection-based approaches both on artificial and real-world financial data. Finally, we apply our method as an early detector for financial crises. © 2024 The Authors
引用
收藏
相关论文
共 50 条
  • [41] Comments on: Multivariate functional outlier detection
    L. A. García-Escudero
    A. Gordaliza
    A. Mayo-Iscar
    Statistical Methods & Applications, 2015, 24 : 233 - 235
  • [42] Multivariate outlier detection in exploration geochemistry
    Filzmoser, P
    Garrett, RG
    Reimann, C
    COMPUTERS & GEOSCIENCES, 2005, 31 (05) : 579 - 587
  • [43] SIMULTANEOUS MULTIVARIATE OUTLIER AND TREND DETECTION
    Pazdernik, Karl
    Stanfill, Bryan
    Bramer, Lisa
    MacPhee, Kellie J.
    2019 IEEE DATA SCIENCE WORKSHOP (DSW), 2019, : 93 - 99
  • [44] Discussion of "multivariate functional outlier detection"
    Narisetty, Naveen Naidu
    He, Xuming
    STATISTICAL METHODS AND APPLICATIONS, 2015, 24 (02): : 209 - 215
  • [45] Rejoinder to ‘multivariate functional outlier detection’
    Mia Hubert
    Peter Rousseeuw
    Pieter Segaert
    Statistical Methods & Applications, 2015, 24 : 269 - 277
  • [46] Some Perspectives on Multivariate Outlier Detection
    Cerioli, Andrea
    Atkinson, Anthony C.
    Riani, Marco
    NEW PERSPECTIVES IN STATISTICAL MODELING AND DATA ANALYSIS, 2011, : 231 - 238
  • [47] Comparison of multivariate outlier detection methods
    Caroni, C
    Prescott, P
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES D-THE STATISTICIAN, 2002, 51 : 395 - 396
  • [48] Rejoinder to 'multivariate functional outlier detection'
    Hubert, Mia
    Rousseeuw, Peter
    Segaert, Pieter
    STATISTICAL METHODS AND APPLICATIONS, 2015, 24 (02): : 269 - 277
  • [49] Error rates for multivariate outlier detection
    Cerioli, Andrea
    Farcomeni, Alessio
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2011, 55 (01) : 544 - 553
  • [50] Generating multivariate continuous data via the notion of nearest neighbors
    Demirtas, Hakan
    Hedeker, Donald
    JOURNAL OF APPLIED STATISTICS, 2011, 38 (01) : 47 - 55