An experimental study of the biological impact of a superflare on the TRAPPIST-1 planets

被引:1
|
作者
Abrevaya, X. C. [1 ,2 ,3 ]
Odert, P. [3 ]
Oppezzo, O. J. [4 ]
Leitzinger, M. [3 ]
Luna, G. J. M. [5 ,6 ]
Guenther, E. [7 ]
Patel, M. R. [8 ]
Hanslmeier, A. [3 ]
机构
[1] UBA, Inst Astron & Fis Espacio, Pabellon IAFE, CONICET, Ciudad Univ,C1428EGA, Buenos Aires, Argentina
[2] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Ciudad Univ,C1428EGA, Buenos Aires, Argentina
[3] Karl Franzens Univ Graz, Inst Phys, Dept Astrophys & Geophys, Univ Pl 5, A-8010 Graz, Austria
[4] Comis Nacl Energia Atom, Ctr Atom Constituyentes, Dept Radiobiol, B1650KNA, Buenos Aires, Argentina
[5] Univ Nacl Hurlingham UNAHUR, Secretaria Invest, Ave Gdor Vergara 2222,B1688GEZ, Villa Tesei, Buenos Aires, Argentina
[6] Consejo Nacl Invest Cient & Tecn CONICET, Godoy Cruz 2290,C1425FQB, Buenos Aires, Argentina
[7] Thuringer Landessternwarte Tautenburg, Sternwarte 5, D-07778 Tautenburg, Germany
[8] Open Univ, Sch Phys Sci, Milton Keynes MK7 6AA, England
基金
奥地利科学基金会;
关键词
astrobiology; planets and satellites: surfaces; planets and satellites: terrestrial planets; stars: activity; stars: flare; ultraviolet: stars; UV SURFACE HABITABILITY; ULTRAVIOLET RADIATION; TRANSMISSION SPECTRA; OUTER-SPACE; MASS-LOSS; EXOPLANETS; FLARES; DETECTABILITY; ENVIRONMENT; MICROCOCCUS;
D O I
10.1093/mnras/stae2433
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this study, we conducted experiments to assess the biological effects of high fluences of UV radiation (UVR) on the TRAPPIST-1 planetary system (planets e, f, g within the habitable zone), unlike previous estimates made by other authors which used theoretical approaches. To this end, we first calculated the UV fluxes at the orbits of the planets of the TRAPPIST-1 system during quiescent conditions and during a superflare. We then studied the effects of UVR on microbial life by exposing UV-tolerant (Deinococcus radiodurans) and UV-susceptible bacteria (Escherichia coli) to fluences equivalent to a superflare on the unshielded surface of these planets. Based on the results of our laboratory experiments, we have found a survival fraction of 6.31x10(-8) for D. radiodurans and a survival fraction below the limit of detection for E. coli at the surface of the planet e, which would receive the highest UVR flux. These survival fractions were higher for the planets f and g. In contrast to the results obtained by other authors which used theoretical estimates, we show that a fraction of the population of microorganisms could tolerate the high UVR fluences of a superflare on the surface of TRAPPIST-1 planets, even without any shielding such as that provided by an atmosphere or an ocean. Our study evidences the existence of methodological problems in theoretical approaches. It also emphasizes the importance of performing specifically designed biological experiments to predict microbial survival in extraterrestrial contexts.
引用
收藏
页码:1616 / 1624
页数:9
相关论文
共 50 条
  • [21] Water loss from terrestrial planets orbiting ultracool dwarfs: implications for the planets of TRAPPIST-1
    Bolmont, E.
    Selsis, F.
    Owen, J. E.
    Ribas, I.
    Raymond, S. N.
    Leconte, J.
    Gillon, M.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2017, 464 (03) : 3728 - 3741
  • [22] Implications of Atmospheric Nondetections for Trappist-1 Inner Planets on Atmospheric Retention Prospects for Outer Planets
    Krissansen-Totton, Joshua
    ASTROPHYSICAL JOURNAL LETTERS, 2023, 951 (02)
  • [23] Modeling climate diversity, tidal dynamics and the fate of volatiles on TRAPPIST-1 planets
    Turbet, Martin
    Bolmont, Emeline
    Leconte, Jeremy
    Forget, Francois
    Selsis, Franck
    Tobie, Gabriel
    Caldas, Anthony
    Naar, Joseph
    Gillon, Michael
    ASTRONOMY & ASTROPHYSICS, 2018, 612
  • [24] The 0.8-4.5 μm Broadband Transmission Spectra of TRAPPIST-1 Planets
    Ducrot, E.
    Sestovic, M.
    Morris, B. M.
    Gillon, M.
    Triaud, A. H. M. J.
    De Wit, J.
    Thimmarayappa, D.
    Agol, E.
    Almleaky, Y.
    Burdanov, A.
    Burgasser, A. J.
    Delrez, L.
    Demory, B-O
    Jehin, E.
    Leconte, J.
    McCormac, J.
    Murray, C.
    Queloz, D.
    Selsis, F.
    Thompson, S.
    Van Grootel, V.
    ASTRONOMICAL JOURNAL, 2018, 156 (05):
  • [25] Impact of Clouds and Hazes on the Simulated JWST Transmission Spectra of Habitable Zone Planets in the TRAPPIST-1 System
    Fauchez, Thomas J.
    Turbet, Martin
    Villanueva, Geronimo L.
    Wolf, Eric T.
    Arney, Giada
    Kopparapu, Ravi K.
    Lincowski, Andrew
    Mandell, Avi
    de Wit, Julien
    Pidhorodetska, Daria
    Domagal-Goldman, Shawn D.
    Stevenson, Kevin B.
    ASTROPHYSICAL JOURNAL, 2019, 887 (02):
  • [26] Magma oceans and enhanced volcanism on TRAPPIST-1 planets due to induction heating
    Kislyakova, K. G.
    Noack, L.
    Johnstone, C. P.
    Zaitsev, V. V.
    Fossati, L.
    Lammer, H.
    Khodachenko, M. L.
    Odert, P.
    Guedel, M.
    NATURE ASTRONOMY, 2017, 1 (12): : 878 - 885
  • [28] Magma oceans and enhanced volcanism on TRAPPIST-1 planets due to induction heating
    K. G. Kislyakova
    L. Noack
    C. P. Johnstone
    V. V. Zaitsev
    L. Fossati
    H. Lammer
    M. L. Khodachenko
    P. Odert
    M. Güdel
    Nature Astronomy, 2017, 1 : 878 - 885
  • [29] Activity of TRAPPIST-1 Analogs
    E. S. Dmitrienko
    I. S. Savanov
    Astronomy Letters, 2022, 48 : 676 - 681
  • [30] On the Age of the TRAPPIST-1 System
    Burgasser, Adam J.
    Mamajek, Eric E.
    ASTROPHYSICAL JOURNAL, 2017, 845 (02):