The Sylvester Theorem and the Rogers-Ramanujan Identities over Totally Real Number Fields

被引:0
|
作者
Jang, Se Wook [1 ]
Kim, Byeong Moon [1 ]
Kim, Kwang Hoon [1 ]
机构
[1] Gangneung-Wonju National University, Gangneung,25457, Korea, Republic of
来源
arXiv | 2023年
关键词
Engineering Village;
D O I
暂无
中图分类号
学科分类号
摘要
Algebraic integers - Generalisation - Real-number field - Rogers-ramanujan identities - Sylvester's theorems - Totally positive
引用
收藏
相关论文
共 50 条
  • [21] SIMPLE PROOF OF ROGERS-RAMANUJAN IDENTITIES
    DOBBIE, JM
    QUARTERLY JOURNAL OF MATHEMATICS, 1962, 13 (49): : 31 - &
  • [22] A MOTIVATED PROOF OF THE ROGERS-RAMANUJAN IDENTITIES
    ANDREWS, GE
    BAXTER, RJ
    AMERICAN MATHEMATICAL MONTHLY, 1989, 96 (05): : 401 - 409
  • [23] New finite Rogers-Ramanujan identities
    Guo, Victor J. W.
    Jouhet, Frederic
    Zeng, Jiang
    RAMANUJAN JOURNAL, 2009, 19 (03): : 247 - 266
  • [24] ROGERS-RAMANUJAN IDENTITIES IN STATISTICAL MECHANICS
    Mathematical Sciences Institute, The Australian National University, Canberra
    ACT
    0200, Australia
    arXiv, 1600,
  • [25] Generalizations of Rogers-Ramanujan type identities
    Hao, Li-Jun
    Kuai, Xueya
    Xia, Lan
    RAMANUJAN JOURNAL, 2024, 65 (02): : 797 - 819
  • [26] LATTICE PATHS AND THE ROGERS-RAMANUJAN IDENTITIES
    BRESSOUD, DM
    LECTURE NOTES IN MATHEMATICS, 1989, 1395 : 140 - 172
  • [28] A probabilistic proof of the Rogers-Ramanujan identities
    Fulman, J
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2001, 33 : 397 - 407
  • [29] ASYMPTOTIC ANALOGS OF THE ROGERS-RAMANUJAN IDENTITIES
    BRENNER, CH
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1986, 43 (02) : 303 - 319
  • [30] Engel expansions and the Rogers-Ramanujan identities
    Andrews, GE
    Knopfmacher, A
    Knopfmacher, J
    JOURNAL OF NUMBER THEORY, 2000, 80 (02) : 273 - 290