Synthesis of complex-valued InSAR data with a multi-task convolutional neural network

被引:0
|
作者
Sibler, Philipp [1 ,2 ]
Sica, Francescopaolo [1 ]
Schmitt, Michael [1 ]
机构
[1] Univ Bundeswehr Munich, Dept Aerosp Engn, Werner Heisenberg Weg 39, D-85577 Neubiberg, Germany
[2] Hensoldt Sensors GmbH, Graf Von Soden Str, D-88090 Immenstaad, Germany
关键词
Synthetic aperture radar (SAR); Deep learning; Multitask learning; Image synthesis; SAR interferometry (InSAR); IMAGE SYNTHESIS;
D O I
10.1016/j.isprsjprs.2024.12.007
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
Simulated remote sensing images bear great potential for many applications in the field of Earth observation. They can be used as controlled testbed for the development of signal and image processing algorithms or can provide a means to get an impression of the potential of new sensor concepts. With the rise of deep learning, the synthesis of artificial remote sensing images by means of deep neural networks has become a hot research topic. While the generation of optical data is relatively straightforward, as it can rely on the use of established models from the computer vision community, the generation of synthetic aperture radar (SAR) data until now is still largely restricted to intensity images since the processing of complex-valued numbers by conventional neural networks poses significant challenges. With this work, we propose to circumvent these challenges by decomposing SAR interferograms into real-valued components. These components are then simultaneously synthesized by different branches of a multi-branch encoder-decoder network architecture. In the end, these real-valued components can be combined again into the final, complex-valued interferogram. Moreover, the effect of speckle and interferometric phase noise is replicated and applied to the synthesized interferometric data. Experimental results on both medium-resolution C-band repeat-pass SAR data and high-resolution X-band single-pass SAR data, demonstrate the general feasibility of the approach.
引用
收藏
页码:192 / 206
页数:15
相关论文
共 50 条
  • [21] FaceHunter: A multi-task convolutional neural network based face detector
    Wang, Dong
    Yang, Jing
    Deng, Jiankang
    Liu, Qingshan
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2016, 47 : 476 - 481
  • [22] Multi-task convolutional neural network system for license plate recognition
    Kim, Hong-Hyun
    Park, Je-Kang
    Oh, Joo-Hee
    Kang, Dong-Joong
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2017, 15 (06) : 2942 - 2949
  • [23] Multi-Task Joint Learning for Graph Convolutional Neural Network Recommendations
    Wang, Yonggui
    Zou, Heyu
    Computer Engineering and Applications, 2024, 60 (04) : 306 - 314
  • [24] Adaptive multi-task convolutional neural network for optical performance monitoring
    Zeng, Qinghui
    Kong, Yibu
    Zhou, Peng
    Lu, Ye
    OPTICS COMMUNICATIONS, 2025, 583
  • [25] Comparison of complex-valued neural network and fuzzy clustering complex-valued neural network for load-flow analysis
    Ceylan, Murat
    Cetinkaya, Nurettin
    Ceylan, Rahime
    Ozbay, Yuksel
    ARTIFICIAL INTELLIGENCE AND NEURAL NETWORKS, 2006, 3949 : 92 - 99
  • [26] MULTI-TASK EMBEDDED CONVOLUTIONAL NEURAL NETWORK FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Lin, Zhijie
    Jia, Sen
    Deng, Bin
    2019 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2019, : 1426 - 1431
  • [27] FMT: fusing multi-task convolutional neural network for person search
    Sulan Zhai
    Shunqiang Liu
    Xiao Wang
    Jin Tang
    Multimedia Tools and Applications, 2019, 78 : 31605 - 31616
  • [28] Robust face recognition based on multi-task convolutional neural network
    Ge, Huilin
    Dai, Yuewei
    Zhu, Zhiyu
    Wang, Biao
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2021, 18 (05) : 6638 - 6651
  • [29] FMT: fusing multi-task convolutional neural network for person search
    Zhai, Sulan
    Liu, Shunqiang
    Wang, Xiao
    Tang, Jin
    MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (22) : 31605 - 31616
  • [30] Fruit freshness detection based on multi-task convolutional neural network
    Zhang, Yinsheng
    Yang, Xudong
    Cheng, Yongbo
    Wu, Xiaojun
    Sun, Xiulan
    Hou, Ruiqi
    Wang, Haiyan
    CURRENT RESEARCH IN FOOD SCIENCE, 2024, 8