Methodology for hyperparameter tuning of deep neural networks for efficient and accurate molecular property prediction

被引:0
|
作者
机构
[1] Nguyen, Xuan Dung James
[2] Liu, Y.A.
来源
Liu, Y.A. (design@vt.edu) | 2025年 / 193卷
关键词
Contrastive Learning - Deep neural networks;
D O I
10.1016/j.compchemeng.2024.108928
中图分类号
学科分类号
摘要
This paper presents a methodology of hyperparameter optimization (HPO) of deep neural networks for molecular property prediction (MPP). Most prior applications of deep learning to MPP have paid only limited attention to HPO, thus resulting in suboptimal values of predicted properties. To improve the efficiency and accuracy of deep learning models for MPP, we must optimize as many hyperparameters as possible and choose a software platform to enable the parallel execution of HPO. We compare the random search, Bayesian optimization, and hyperband algorithms, together with the Bayesian-hyperband combination within the software packages of KerasTuner and Optuna for HPO. We conclude that the hyperband algorithm, which has not been used in previous MPP studies, is most computationally efficient; it gives MPP results that are optimal or nearly optimal in terms of prediction accuracy. Based on our case studies, we recommend the use of the Python library KerasTuner for HPO. © 2024
引用
收藏
相关论文
共 50 条
  • [31] Prediction of Molecular Conformation Using Deep Generative Neural Networks
    Xu, Congsheng
    Lu, Yi
    Deng, Xiaomei
    Yu, Peiyuan
    CHINESE JOURNAL OF CHEMISTRY, 2023, 41 (24) : 3684 - 3688
  • [32] Prediction of molecular energy using deep tensor neural networks
    Li, Yan
    Min, Han-Yi
    Dong, Zi-Bing
    Yuan, Tian
    Li, Xiao-Qi
    Xu, Pei-Jun
    Li, Guo-Hui
    COMMUNICATIONS IN INFORMATION AND SYSTEMS, 2018, 18 (04) : 229 - 250
  • [33] Property Prediction of Functional Organic Molecular Crystals with Graph Neural Networks
    O'Connor, Dana
    Buitrago, Paola A.
    PRACTICE AND EXPERIENCE IN ADVANCED RESEARCH COMPUTING 2024, PEARC 2024, 2024,
  • [34] Cross-dependent graph neural networks for molecular property prediction
    Ma, Hehuan
    Bian, Yatao
    Rong, Yu
    Huang, Wenbing
    Xu, Tingyang
    Xie, Weiyang
    Ye, Geyan
    Huang, Junzhou
    BIOINFORMATICS, 2022, 38 (07) : 2003 - 2009
  • [35] Quantitative evaluation of explainable graph neural networks for molecular property prediction
    Rao, Jiahua
    Zheng, Shuangjia
    Lu, Yutong
    Yang, Yuedong
    PATTERNS, 2022, 3 (12):
  • [36] Comparison of Atom Representations in Graph Neural Networks for Molecular Property Prediction
    Pocha, Agnieszka
    Dana, Tomasz
    Podlewska, Sabina
    Tabor, Jacek
    Maziarka, Lukasz
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [37] Physical pooling functions in graph neural networks for molecular property prediction
    Schweidtmann, Artur M.
    Rittig, Jan G.
    Weber, Jana M.
    Grohe, Martin
    Dahmen, Manuel
    Leonhard, Kai
    Mitsos, Alexander
    COMPUTERS & CHEMICAL ENGINEERING, 2023, 172
  • [38] KinomeNet: accurate prediction of protein kinase inhibitors with deep convolutional neural networks
    Isayev, Olexandr
    Tropsha, Alexander
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 252
  • [39] Fast and Accurate Performance Prediction and Optimization of Thermoelectric Generators with Deep Neural Networks
    Wang, Pan
    Wang, Kaifa
    Xi, Li
    Gao, Ruxin
    Wang, Baolin
    ADVANCED MATERIALS TECHNOLOGIES, 2021, 6 (07):
  • [40] An adaptive threshold mechanism for accurate and efficient deep spiking convolutional neural networks
    Chen, Yunhua
    Mai, Yingchao
    Feng, Ren
    Xiao, Jinsheng
    NEUROCOMPUTING, 2022, 469 : 189 - 197