Generalized geographically and temporally weighted regression

被引:0
|
作者
Yu, Hanchen [1 ]
机构
[1] Chongqing Univ, Sch Management Sci & Real Estate, Chongqing, Peoples R China
关键词
Geographically and temporally weighted; regression; Generalized linear model; Spatiotemporal non-stationarity;
D O I
10.1016/j.compenvurbsys.2024.102244
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper proposes Generalized Geographically and Temporally Weighted Regression (GGTWR) to address the limitations of Geographically and Temporally Weighted Regression (GTWR). The proposed GGTWR framework encompasses various generalized linear models, e.g. Poisson regression, negative binomial regression, and other models of the exponential distribution family. The paper also shows the classic GTWR bandwidth search algorithm is not suitable for GGTWR and proposes a new bandwidth search algorithm for GGTWR. Several simulation experiments are used to prove that GGTWR can effectively capture spatiotemporal non-stationary. The GGTWR framework enables the estimation of varying regression coefficients that capture spatial and temporal heterogeneity for generalized linear relationships, providing a comprehensive understanding of how predictor variables influence the response variable across different locations and time periods. An application to interprovincial population migration in China using 2005-2020 census data demonstrates the interpretability of the GGTWR framework. GGTWR provides a flexible modeling approach that more accurately explains real-world phenomena.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] A Review on Geographically Weighted Regression
    Lu B.
    Ge Y.
    Qin K.
    Zheng J.
    1600, Editorial Board of Medical Journal of Wuhan University (45): : 1356 - 1366
  • [32] Geographically and Temporally Weighted Regression in Assessing Dengue Fever Spread Factors in Yunnan Border Regions
    ZHU Xiao Xiang
    WANG Song Wang
    LI Yan Fei
    ZHANG Ye Wu
    SU Xue Mei
    ZHAO Xiao Tao
    BiomedicalandEnvironmentalSciences, 2024, 37 (05) : 511 - 520
  • [33] Geographically and temporally neural network weighted regression for modeling spatiotemporal non-stationary relationships
    Wu, Sensen
    Wang, Zhongyi
    Du, Zhenhong
    Huang, Bo
    Zhang, Feng
    Liu, Renyi
    INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2021, 35 (03) : 582 - 608
  • [34] Introducing bootstrap test technique to identify spatial heterogeneity in geographically and temporally weighted regression models
    Hong, Zhimin
    Wang, Jiayuan
    Wang, Huhu
    SPATIAL STATISTICS, 2022, 51
  • [35] Analyzing the Effects of Lightning Strike on Distribution Transformer Failure via Geographically and Temporally Weighted Regression
    Park, Cheonkyu
    Lee, Juseok
    Cho, Chongeun
    Kim, Do-In
    IEEE TRANSACTIONS ON POWER DELIVERY, 2024, 39 (06) : 3430 - 3440
  • [36] A geographically and temporally weighted regression model to explore the spatiotemporal influence of built environment on transit ridership
    Ma, Xiaolei
    Zhang, Jiyu
    Ding, Chuan
    Wang, Yunpeng
    COMPUTERS ENVIRONMENT AND URBAN SYSTEMS, 2018, 70 : 113 - 124
  • [37] Geographically and Temporally Weighted Regression in Assessing Dengue Fever Spread Factors in Yunnan Border Regions* *
    Zhu, Xiao Xiang
    Wang, Song Wang
    Li, Yan Fei
    Zhang, Ye Wu
    Su, Xue Mei
    Zhao, Xiao Tao
    BIOMEDICAL AND ENVIRONMENTAL SCIENCES, 2024, 37 (05) : 511 - 520
  • [38] Modeling and analysis of urban housing price models based on multiscale geographically and temporally weighted regression
    Ye J.
    Hu X.
    Xu H.
    Chen X.
    Lü Q.
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2021, 50 (09): : 1266 - 1274
  • [39] Parameter Estimation and Hypothesis Testing of Geographically Weighted Multivariate Generalized Poisson Regression
    Berliana, Sarni Maniar
    Purhadi
    Sutikno
    Rahayu, Santi Puteri
    MATHEMATICS, 2020, 8 (09)
  • [40] Using geographically temporally weighted regression to assess the contribution of corruption governance to global PM2.5
    Yajie Liu
    Feng Dong
    Environmental Science and Pollution Research, 2021, 28 : 13536 - 13551