A review on the reliability of knowledge graph: from a knowledge representation learning perspective

被引:0
|
作者
Yang, Yunxiao [1 ]
Chen, Jianting [1 ]
Xiang, Yang [1 ]
机构
[1] Tongji Univ, Coll Elect & Informat Engn, Caoan Highway, Shanghai 201804, Peoples R China
基金
中国国家自然科学基金;
关键词
Knowledge graph; Knowledge reliability; Knowledge representation learning; Uncertainty measurement; Error detection; LARGE-SCALE; LINK PREDICTION; BASE;
D O I
10.1007/s11280-024-01316-w
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Knowledge graphs manage and organize data and information in a structured form, which can provide effective support for various applications and services. Only reliable knowledge can provide valuable information. However, most existing knowledge graphs encounter the problem of partially unreliable knowledge. With the progress of the Internet and information technology, how to ensure the reliability of knowledge graphs has become a significant research topic. We first clarify the concept of knowledge graph reliability based on the attributes of facts in knowledge graphs. It includes two parts: the correctness and uncertainty of knowledge. We then analyze their corresponding research tasks. The research of knowledge correctness aims to handle the erroneous triples in knowledge graphs, whereas the research of knowledge uncertainty assesses the ambiguous and probabilistic triples. Knowledge representation learning, a neural technique to process symbolic knowledge, is the promising approach in the research of knowledge graph reliability. Therefore, we summarize the related studies on knowledge correctness and uncertainty based on the framework of knowledge representation learning, which includes four categories: score function modification, representation vector optimization, loss function adjustment, and textual information integration. Additionally, we present an analysis of the widely used benchmarks, and lastly conclude with a discussion on the potential trends and future research directions in the reliability of knowledge graph.
引用
收藏
页数:38
相关论文
共 50 条
  • [31] Knowledge graph representation learning with simplifying hierarchical feature propagation
    Li, Zhifei
    Zhang, Qi
    Zhu, Fangfang
    Li, Duantengchuan
    Zheng, Chao
    Zhang, Yan
    INFORMATION PROCESSING & MANAGEMENT, 2023, 60 (04)
  • [32] Representation Learning with Ordered Relation Paths for Knowledge Graph Completion
    Zhu, Yao
    Liu, Hongzhi
    Wu, Zhonghai
    Song, Yang
    Zhang, Tao
    2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019): PROCEEDINGS OF THE CONFERENCE, 2019, : 2662 - 2671
  • [33] Multi-Concept Representation Learning for Knowledge Graph Completion
    Wang, Jiapu
    Wang, Boyue
    Gao, Junbin
    Hu, Yongli
    Yin, Baocai
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2023, 17 (01)
  • [34] Temporal Knowledge Graph Entity Alignment via Representation Learning
    Song, Xiuting
    Bai, Luyi
    Liu, Rongke
    Zhang, Han
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, DASFAA 2022, PT II, 2022, : 391 - 406
  • [35] Survey on Representation Learning Methods of Knowledge Graph for Link Prediction
    Du X.-Y.
    Liu M.-W.
    Shen L.-W.
    Peng X.
    Ruan Jian Xue Bao/Journal of Software, 2024, 35 (01): : 87 - 117
  • [36] Graph representation learning via simple jumping knowledge networks
    Fei Yang
    Huyin Zhang
    Shiming Tao
    Sheng Hao
    Applied Intelligence, 2022, 52 : 11324 - 11342
  • [37] Hybrid Approach for Accurate and Interpretable Representation Learning of Knowledge Graph
    Yogendran, Nivetha
    Kanagarajah, Abivarshi
    Chandiran, Kularajini
    Thayasivam, Uthayasanker
    MERCON 2020: 6TH INTERNATIONAL MULTIDISCIPLINARY MORATUWA ENGINEERING RESEARCH CONFERENCE (MERCON), 2020, : 650 - 655
  • [38] Temporal Knowledge Graph Reasoning Based on Evolutional Representation Learning
    Li, Zixuan
    Jin, Xiaolong
    Li, Wei
    Guan, Saiping
    Guo, Jiafeng
    Shen, Huawei
    Wang, Yuanzhuo
    Cheng, Xueqi
    SIGIR '21 - PROCEEDINGS OF THE 44TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 2021, : 408 - 417
  • [39] Temporal knowledge graph representation learning with local and global evolutions
    Zhang, Jiasheng
    Liang, Shuang
    Sheng, Yongpan
    Shao, Jie
    KNOWLEDGE-BASED SYSTEMS, 2022, 251
  • [40] Comprehensive Analysis of Negative Sampling in Knowledge Graph Representation Learning
    Kamigaito, Hidetaka
    Hayashi, Katsuhiko
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022, : 10661 - 10675