An optimisation of 3D printing parameters of nanocomposites based on improved particle swarm optimisation algorithm

被引:0
|
作者
Zhang J. [1 ]
Yang Y. [1 ]
机构
[1] School of Mechanical Engineering and Automation, University of Science and Technology Liaoning, Anshan
关键词
3D printing parameters; contraction expansion factor; improved PSO algorithm; nanocomposites; parameter optimisation;
D O I
10.1504/IJMMP.2022.10052515
中图分类号
学科分类号
摘要
In order to overcome the problems of low accuracy, long optimisation time and high printing error of traditional 3D printing parameter optimisation methods, a optimisation method of 3D printing parameters of nanocomposites based on improved particle swarm optimisation (PSO) algorithm was proposed. The 3D mechanism model of nanocomposites 3D printer was constructed, the kinematics of the model was solved, and the calculation results of 3D printing parameters were obtained. The fundamental PSO algorithm is improved by introducing potential drop and contraction expansion factor. The objective function of 3D printing parameter optimisation was constructed, and the improved PSO algorithm was used to solve the function to realise 3D printing parameter optimisation. The test results show that the calculation accuracy of 3D printing parameters of nanocomposites is always higher than 92%, the average optimisation time is 0.72 s, and the maximum 3D printing error is 0.2 mm. Copyright © 2023 Inderscience Enterprises Ltd.
引用
收藏
页码:266 / 277
页数:11
相关论文
共 50 条
  • [41] Proportional-integral-derivative controller parameter optimisation based on improved glowworm swarm optimisation algorithm
    Guo X.
    Yin S.-C.
    Zhang Y.-W.
    Li W.
    [J]. International Journal of Computing Science and Mathematics, 2020, 11 (03): : 278 - 290
  • [42] Estimating HMM Parameters Using Particle Swarm Optimisation
    Phon-Amnuaisuk, Somnuk
    [J]. APPLICATIONS OF EVOLUTIONARY COMPUTING, PROCEEDINGS, 2009, 5484 : 625 - 634
  • [43] Multi-region particle swarm optimisation algorithm
    Fan J.-S.
    [J]. Fan, J.-S. (fjsszw2005@126.com), 2012, Inderscience Publishers (44) : 117 - 123
  • [44] Evaluation research on green degree of equipment manufacturing industry based on improved particle swarm optimisation algorithm
    Li Z.
    [J]. Li, Zhang (66082036@qq.com), 1600, Inderscience Enterprises Ltd., 29, route de Pre-Bois, Case Postale 856, CH-1215 Geneva 15, CH-1215, Switzerland (12): : 217 - 221
  • [45] An improved multi-leader comprehensive learning particle swarm optimisation based on gravitational search algorithm
    Amponsah, Alfred Adutwum
    Han, Fei
    Osei-Kwakye, Jeremiah
    Bonah, Ernest
    Ling, Qing-Hua
    [J]. CONNECTION SCIENCE, 2021, 33 (04) : 803 - 834
  • [46] Hybrid particle swarm optimisation algorithm for image segmentation
    Zhang, Jian-de
    Lu, Jin-gui
    Li, Hong-liang
    [J]. INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL, 2011, 14 (04) : 317 - 323
  • [47] Multi-region particle swarm optimisation algorithm
    Fan, Ji-Shan
    [J]. INTERNATIONAL JOURNAL OF COMPUTER APPLICATIONS IN TECHNOLOGY, 2012, 44 (02) : 117 - 123
  • [48] A Synchronous-Asynchronous Particle Swarm Optimisation Algorithm
    Ab Aziz, Nor Azlina
    Mubin, Marizan
    Mohamad, Mohd Saberi
    Ab Aziz, Kamarulzaman
    [J]. SCIENTIFIC WORLD JOURNAL, 2014,
  • [49] 3D DV-hop localisation scheme based on particle swarm optimisation in wireless sensor networks
    Chen, Xiao
    Zhang, Benliang
    [J]. INTERNATIONAL JOURNAL OF SENSOR NETWORKS, 2014, 16 (02) : 100 - 105
  • [50] A memetic particle swarm optimisation algorithm for dynamic multi-modal optimisation problems
    Wang, Hongfeng
    Yang, Shengxiang
    Ip, W. H.
    Wang, Dingwei
    [J]. INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2012, 43 (07) : 1268 - 1283