Hydrogen bond-mediated assembly of homo-charged COF nanosheets and polyelectrolytes towards robust Li+/Mg2+ separation membrane

被引:0
|
作者
Hu, Bo [1 ,2 ]
Deng, Hao [4 ,5 ]
Zheng, Yu [1 ,2 ]
Zhang, Zixuan [4 ,5 ]
Wu, Tao [1 ,2 ]
Liu, Zaichuang [1 ,2 ]
Jia, Beixi [1 ,2 ]
Lin, Hanqi [1 ]
Zhang, Runnan [1 ,2 ,3 ]
Jiang, Zhongyi [1 ,2 ,3 ,4 ]
机构
[1] Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin,300072, China
[2] Ningbo Key Laboratory of Green Petrochemical Carbon Emission Reduction Technology and Equipment, Zhejiang Institute of Tianjin University, Zhejiang, Ningbo,315201, China
[3] Haihe Laboratory of Sustainable Chemical Transformations, Tianjin,300192, China
[4] Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou,350207, China
[5] Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
基金
中国国家自然科学基金;
关键词
Elastomers - Hydrogen bonds - Nafion membranes - Nanosheets - Polyelectrolytes;
D O I
10.1016/j.memsci.2024.123489
中图分类号
学科分类号
摘要
Developing membranes with ordered channels and high positive charge density is crucial for Li+/Mg2+ separation. Ionic covalent organic framework (COF) membranes are promising candidates, yet they face challenges like pore size mismatch with ions and the liable structural defects. Herein, we proposed a hydrogen bond-mediated strategy to assemble membranes from homo-charged COF nanosheets and polyelectrolytes. Compared with the quaternary amines in poly (diallyl dimethyl ammonium chloride), the abundant primary and secondary amines in polyethyleneimine facilitate multiple hydrogen bonding interactions with COF nanosheets. These interactions effectively overcome the electrostatic repulsion between positive charges, endowing membrane with structural robustness. Furthermore, the intercalation of polyelectrolytes eliminates the structural defects, reduces the membrane pore size, and enhances the Donnan effect. The optimized COF membrane exhibited a pure water flux of 10.2 L m−2 h−1 bar−1, separation factor of up to 30 at high Mg2+/Li+ mass ratio of 100, and excellent stability under various operating conditions. Strikingly, our strategy facilitates the fabrication of membranes in large area (>450 cm2) while maintaining consistent separation performance, showcasing substantial potential of scalable manufacturing. © 2024 Elsevier B.V.
引用
下载
收藏
相关论文
共 10 条
  • [1] A positively charged PI nanofiltration membrane with good separation for Li+ and Mg2+
    Bi, Qiuyan
    Xu, Shiai
    DESALINATION AND WATER TREATMENT, 2020, 198 : 98 - 107
  • [2] Positive charged PEI-TMC composite nanofiltration membrane for separation of Li + and Mg2+ from brine with high Mg2+/Li+ ratio
    Xu, Ping
    Wang, Wei
    Qian, Xiaoming
    Wang, Haibo
    Guo, Changsheng
    Li, Nan
    Xu, Zhiwei
    Teng, Kunyue
    Wang, Zhen
    DESALINATION, 2019, 449 : 57 - 68
  • [3] Highly positively-charged membrane enabled by a competitive reaction for efficient Li+/Mg2+ separation
    Wang, Wenguang
    Wang, Chao
    Zhang, Yanqiu
    Xu, Hanyang
    Shao, Lu
    SEPARATION AND PURIFICATION TECHNOLOGY, 2024, 330
  • [4] Positively-charged nanofiltration membrane constructed by polyethyleneimine/layered double hydroxide for Mg2+/Li+ separation
    Ni, Hongxu
    Wang, Naixin
    Yang, Yuye
    Shen, Mengxin
    An, Quan-Fu
    DESALINATION, 2023, 548
  • [5] Fabrication of positively charged nanofiltration membrane with uniform charge distribution by reversed interfacial polymerization for Mg2+/Li+ separation
    Li, Yunhao
    Wang, Shuhao
    Wu, Wenyuan
    Yu, Haijun
    Che, Ruxin
    Kang, Guodong
    Cao, Yiming
    JOURNAL OF MEMBRANE SCIENCE, 2022, 659
  • [6] "Bridge" graphene oxide modified positive charged nanofiltration thin membrane with high efficiency for Mg2+/Li+ separation
    Xu, Ping
    Hong, Jun
    Qian, Xiaoming
    Xu, Zhenzhen
    Xia, Hong
    Ni, Qing-Qing
    DESALINATION, 2020, 488 (488)
  • [7] One-Step Construction of the Positively/Negatively Charged Ultrathin Janus Nanofiltration Membrane for the Separation of Li+ and Mg2+
    Guo, Changsheng
    Qian, Yao
    Liu, Pengbi
    Zhang, Qinglei
    Zeng, Xianhua
    Xu, Zhiwei
    Zhang, Songnan
    Li, Nan
    Qian, Xiaoming
    Yu, Feiyue
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (03) : 4814 - 4825
  • [8] Ultrahigh-efficient separation of Mg2+/Li+ using an in-situ reconstructed positively charged nanofiltration membrane under an electric field
    Li, Quan
    Liu, Huan
    He, Benqiao
    Shi, Wenxiong
    Ji, Yanhong
    Cui, Zhenyu
    Yan, Feng
    Mohammad, Younas
    Li, Jianxin
    JOURNAL OF MEMBRANE SCIENCE, 2022, 641
  • [9] Positively-charged PEI/TMC nanofiltration membrane prepared by adding a diamino-silane coupling agent for Li+/Mg2+ separation
    Wu, Huanhuan
    Zhao, Haoyue
    Lin, Yakai
    Liu, Xin
    Wang, Lin
    Yao, Hong
    Tang, Yuanhui
    Yu, Lixin
    Wang, Haihui
    Wang, Xiaolin
    JOURNAL OF MEMBRANE SCIENCE, 2023, 672
  • [10] Positively charged thin-film composite hollow fiber nanofiltration membrane via interfacial polymerization and branch polyethyleneimine modification for Mg2+/Li+ separation
    Wang, Enlin
    Liu, Shaoxiao
    Liu, Liyang
    Han, Lihui
    Su, Baowei
    JOURNAL OF MEMBRANE SCIENCE LETTERS, 2023, 3 (02):