Multiresolution Hypergraph Neural Network for Intelligent Fault Diagnosis

被引:0
|
作者
Tsinghua University, Institute of Nuclear and New Energy Technology, Beijing [1 ]
100084, China
不详 [2 ]
100190, China
不详 [3 ]
100049, China
机构
来源
关键词
Complex networks - Deep learning - Fault detection - Graph neural networks - Learning algorithms;
D O I
暂无
中图分类号
学科分类号
摘要
Intelligent fault diagnosis has made significant progress, thanks to machine learning, particularly deep-learning algorithms. However, most machine-learning algorithms treat samples as independent and ignore the correlations between samples that contain valuable information for creating discriminative features. In recent years, graph neural networks have increased diagnostic performance by capturing the correlation between samples according to establishing the inherent structure of data, but they also suffer from two shortcomings. First, a simple graph only represents pairwise relationships of samples and cannot depict complex higher-order structures. Second, the generated graph structure is insufficient to characterize the data without an explicit structure. To address the above two issues, this article proposes a multiresolution hypergraph neural network, a novel algorithm that can discover higher-order complex relationships between samples, and mine the structure hidden in data by establishing and fusing hypergraph structures at multiple resolutions. Experiments are conducted on three datasets to demonstrate the effectiveness of the proposed algorithm. © 1963-2012 IEEE.
引用
收藏
相关论文
共 50 条
  • [21] A Novel Method for Intelligent Fault Diagnosis of Bearing Based on Capsule Neural Network
    Wang, Zhijian
    Zheng, Likang
    Du, Wenhua
    Cai, Wenan
    Zhou, Jie
    Wang, Jingtai
    Han, Xiaofeng
    He, Gaofeng
    COMPLEXITY, 2019, 2019
  • [22] Intelligent condition monitoring and fault diagnosis of a gearbox based on Artificial Neural Network
    Yang, Shu Lian
    Li Wenhai
    Zhen Hua
    Xiang Fang
    ICEMI 2007: PROCEEDINGS OF 2007 8TH INTERNATIONAL CONFERENCE ON ELECTRONIC MEASUREMENT & INSTRUMENTS, VOL III, 2007, : 560 - +
  • [23] Intelligent Fault Diagnosis of Rotating Machinery Based on Deep Recurrent Neural Network
    Li, Xingqiu
    Jiang, Hongkai
    Hu, Yanan
    Xiong, Xiong
    2018 INTERNATIONAL CONFERENCE ON SENSING, DIAGNOSTICS, PROGNOSTICS, AND CONTROL (SDPC), 2018, : 67 - 72
  • [24] Intelligent Mechanical Fault Diagnosis Using Multisensor Fusion and Convolution Neural Network
    Xie, Tingli
    Huang, Xufeng
    Choi, Seung-Kyum
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2022, 18 (05) : 3213 - 3223
  • [25] A Deep Neural Network Based Robust Intelligent Strategy for Microgrid Fault Diagnosis
    Bhuiyan, Erphan A.
    Fahim, Shahriar Rahman
    Sarker, Subrata K.
    Das, Sajal K.
    Islam, Md Rabiul
    Muttaqi, Kashem
    2021 IEEE INDUSTRY APPLICATIONS SOCIETY ANNUAL MEETING (IAS), 2021,
  • [26] Intelligent fault diagnosis for rolling bearing based on improved convolutional neural network
    Gong W.-F.
    Chen H.
    Zhang Z.-H.
    Zhang M.-L.
    Guan C.
    Wang X.
    Zhendong Gongcheng Xuebao/Journal of Vibration Engineering, 2020, 33 (02): : 400 - 413
  • [27] Bearing Intelligent Fault Diagnosis Based on Wavelet Transform and Convolutional Neural Network
    Guo, Junfeng
    Liu, Xingyu
    Li, Shuangxue
    Wang, Zhiming
    SHOCK AND VIBRATION, 2020, 2020
  • [28] Intelligent Fault Diagnosis for Machinery Based on Enhanced Transfer Convolutional Neural Network
    Chen, Zhuyun
    Zhong, Qi
    Huang, Ruyi
    Liao, Yixiao
    Li, Jipu
    Li, Weihua
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2021, 57 (21): : 96 - 105
  • [29] Intelligent Fault Diagnosis for Rotary Machinery Using Transferable Convolutional Neural Network
    Chen, Zhuyun
    Gryllias, Konstantinos
    Li, Weihua
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2020, 16 (01) : 339 - 349
  • [30] ECNN: Intelligent Fault Diagnosis Method Using Efficient Convolutional Neural Network
    Zhang, Chao
    Huang, Qixuan
    Zhang, Chaoyi
    Yang, Ke
    Cheng, Liye
    Li, Zhan
    ACTUATORS, 2022, 11 (10)