New exact solutions for a generalized variable-coefficient KdV equation

被引:0
|
作者
Theoretical Physics Group, Faculty of Science, Mansoura University, New Damietta 34517, Damietta, Egypt [1 ]
机构
来源
Nonlinear Anal Theory Methods Appl | 1600年 / 8卷 / 2763-2770期
关键词
921; Mathematics; -; 921.2; Calculus; 931.1; Mechanics;
D O I
暂无
中图分类号
学科分类号
摘要
20
引用
收藏
相关论文
共 50 条
  • [31] Generalized Variable-Coefficient KP Equation
    Yi-Tian Gao
    Bo Tian
    International Journal of Theoretical Physics, 1998, 37 : 2299 - 2301
  • [32] Exact solutions for a nonisospectral and variable-coefficient Kadomtsev- Petviashvili equation
    Deng Shu-Fang
    CHINESE PHYSICS LETTERS, 2006, 23 (07) : 1662 - 1665
  • [33] Various exact analytical solutions of a variable-coefficient Kadomtsev–Petviashvili equation
    Jian-Guo Liu
    Wen-Hui Zhu
    Nonlinear Dynamics, 2020, 100 : 2739 - 2751
  • [34] Some new exact solutions for a generalized variable coeffi- cients KdV equation
    Rajagopalan, R.
    Kader, Abass H. Abdel
    Latif, Mohamed S. Abdel
    Baleanu, Dumitru
    El Sonbaty, Amr
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2023, 29 (01): : 1 - 11
  • [35] New exact solutions for a generalized variable coefficients 2D KdV equation
    Elwakil, SA
    El-Labany, SK
    Zahran, MA
    Sabry, R
    CHAOS SOLITONS & FRACTALS, 2004, 19 (05) : 1083 - 1086
  • [36] A new method for finding traveling wave solutions of the generalized KdV equation with variable coefficient
    Ding, Shuangshuang
    Sun, Weijun
    Zhu, Danchen
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 199 (01) : 268 - 274
  • [37] Auto-Backlund transformation and exact solutions of the generalized variable-coefficient Kadomtsev-Petviashvili equation
    Liu, Jian-Guo
    Li, Ye-Zhou
    COMPUTER PHYSICS COMMUNICATIONS, 2008, 179 (10) : 724 - 732
  • [38] Exact Solutions for a Generalized KdV-MKdV Equation with Variable Coefficients
    Tang, Bo
    Wang, Xuemin
    Fan, Yingzhe
    Qu, Junfeng
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2016, 2016
  • [39] Soliton-like solutions for a (2+1)-dimensional nonintegrable KdV equation and a variable-coefficient KdV equation
    Chen, Y
    Li, B
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 2003, 118 (08): : 767 - 776
  • [40] The Painleve property, Backlund transformation, Lax pair and new analytic solutions of a generalized variable-coefficient KdV equation from fluids and plasmas
    Zhang Yuping
    Wang Junyi
    Wei Guangmei
    Liu Ruiping
    PHYSICA SCRIPTA, 2015, 90 (06)