Numerical simulation of novel stepped hybrid bonding interface using finite element analysis

被引:0
|
作者
Ni, Wentao [1 ]
Sheng, Can [2 ]
Zhao, Bo [2 ]
Tian, Zhiqiang [3 ]
Chen, Min [1 ]
Wang, Shizhao [3 ]
Wu, Gai [1 ,3 ,4 ]
机构
[1] Wuhan Univ, Inst Technol Sci, Wuhan 430072, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Mech Sci & Engn, Wuhan 430074, Peoples R China
[3] Wuhan Univ, Sch Power & Mech Engn, Wuhan 430072, Peoples R China
[4] Wuhan Univ, Hubei Key Lab Elect Mfg & Packaging Integrat, Wuhan 430072, Peoples R China
基金
中国国家自然科学基金;
关键词
Hybrid bonding; Copper/polymer structure; Bonding strength; Numerical simulation; CU; PROTRUSION; CREEP;
D O I
10.1016/j.mssp.2024.109082
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
3D integration using advanced packaging and high-density chip stacking technologies has been seen as a key technological breakthrough to meet the market demand in the post-Moore era. In recent years, hybrid bonding (HB) has been regarded as a key technology for realizing high-density packaging due to its advantages such as smaller bonding space and faster electrical signal transmission. In this paper, a novel copper/polymer hybrid bonding structure is proposed, which can realize a stepped periodic bonding interface that has higher bonding strength compared with the traditional bonding interface and can effectively resist the interface failure caused by shear. The peeling stress of the bonding interface under different geometries, material parameters and process conditions is derived and compared by numerical simulation, and the risk of debonding is evaluated. It is shown that the novel structure can realize higher shear strength bonding within a wide window of process parameters.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Numerical simulation of premixed combustion using an enriched finite element method
    van der Bos, Fedderik
    Gravemeier, Volker
    JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (10) : 3605 - 3624
  • [42] Numerical simulation of superimposed finite strains using spectral element method
    V. A. Levin
    K. M. Zingerman
    A. V. Vershinin
    D. A. Konovalov
    Continuum Mechanics and Thermodynamics, 2022, 34 : 1205 - 1217
  • [43] Numerical simulation of an acoustic window system using finite element method
    School of Architecture, University of Sheffield, Sheffield S10 2TN, United Kingdom
    Acta Acust. United Acust., 2007, 1 (152-163):
  • [44] Roll forming simulation using finite element analysis
    Armstrong World Industries, Lancaster, United States
    Manuf Rev, 2 (114-119):
  • [45] Numerical simulation of gear surface hardening using the finite element method
    He, Bin
    Huang, Shan
    He, Xiaolin
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2014, 74 (5-8): : 665 - 672
  • [46] Tire cornering simulation using finite element analysis
    Kabe, K
    Koishi, M
    JOURNAL OF APPLIED POLYMER SCIENCE, 2000, 78 (08) : 1566 - 1572
  • [47] Numerical Simulation of Crack Modeling using Extended Finite Element Method
    Jovicic, Gordana
    Zivkovic, Miroslav
    Jovicic, Nebojsa
    STROJNISKI VESTNIK-JOURNAL OF MECHANICAL ENGINEERING, 2009, 55 (09): : 549 - 554
  • [48] Numerical Simulation of ISO Freight Container Using Finite Element Modelling
    Ling, Philip Chie Hui
    Tan, Cher Siang
    PROCEEDINGS OF AICCE'19: TRANSFORMING THE NATION FOR A SUSTAINABLE TOMORROW, 2020, 53 : 463 - 469
  • [49] Numerical simulation of pressure therapy glove by using Finite Element Method
    Yu, Annie
    Yick, Kit Lun
    Ng, Sun Pui
    Yip, Joanne
    Chan, Ying Fan
    BURNS, 2016, 42 (01) : 141 - 151
  • [50] Numerical simulation of gear surface hardening using the finite element method
    Bin He
    Shan Huang
    Xiaolin He
    The International Journal of Advanced Manufacturing Technology, 2014, 74 : 665 - 672