Automated Shoreline Segmentation in Satellite Imagery Using USV Measurements

被引:2
|
作者
Jaszcz, Antoni [1 ,2 ]
Wlodarczyk-Sielicka, Marta [3 ]
Stateczny, Andrzej [4 ]
Polap, Dawid [1 ]
Garczynska, Ilona [2 ,3 ]
机构
[1] Silesian Tech Univ, Fac Appl Math, Kaszubska 23, PL-44100 Gliwice, Poland
[2] Marine Technol Ltd, Roszczynialskiego 4-6, PL-81521 Gdynia, Poland
[3] Maritime Univ Szczecin, Dept Geoinformat & Hydrog, Waly Chrobrego 1-2, PL-70500 Szczecin, Poland
[4] Gdynia Maritime Univ, Fac Nav, 81-87 Morska St, PL-81225 Gdynia, Poland
关键词
USV; LiDAR; multibeam echosounder; image; fusion; masks; segmentation; automatization;
D O I
10.3390/rs16234457
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Generating aerial shoreline segmentation masks can be a daunting task, often requiring manual labeling or correction. This is further problematic because neural segmentation models require decent and abundant data for training, requiring even more manpower to automate the process. In this paper, we propose utilizing Unmanned Surface Vehicles (USVs) in an automated shoreline segmentation system on satellite imagery. The remotely controlled vessel first collects above- and underwater shoreline information using light detection and ranging (LiDAR) and multibeam echosounder (MBES) measuring instruments, resulting in a geo-referenced 3D point cloud. After cleaning and processing these data, the system integrates the projected map with an aerial image of the region. Based on the height values of the mapped points, the image is segmented. Finally, post-processing methods and the k-NN algorithm are introduced, resulting in a complete binary shoreline segmentation mask. The obtained data were used for training U-Net-type segmentation models with pre-trained backbones. The InceptionV3-based model achieved an accuracy of 96% and a dice coefficient score of 93%, demonstrating the effectiveness of the proposed system as a source of data acquisition for training deep neural networks.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Urban Terrain Segmentation Using Multispectral Satellite Imagery
    Nwagu, Martins
    Garbagna, Lorenzo
    Saheer, Lakshmi Babu
    Oghaz, Mandi Maktabdar
    PROCEEDINGS OF NINTH INTERNATIONAL CONGRESS ON INFORMATION AND COMMUNICATION TECHNOLOGY, VOL 2, ICICT 2024, 2024, 1012 : 165 - 173
  • [2] Panel Segmentation: A Python']Python Package for Automated Solar Array Metadata Extraction Using Satellite Imagery
    Perry, Kirsten
    Campos, Christopher
    IEEE JOURNAL OF PHOTOVOLTAICS, 2023, 13 (02): : 208 - 212
  • [3] AUTOMATED EXTRACTION OF PLANTATIONS FROM IKONOS SATELLITE IMAGERY USING A LEVEL SET BASED SEGMENTATION METHOD
    Vogt, K.
    Scheuermann, B.
    Becker, C.
    Bueschenfeld, T.
    Rosenhahn, B.
    Ostermann, J.
    100 YEARS ISPRS ADVANCING REMOTE SENSING SCIENCE, PT 1, 2010, 38 : 275 - 280
  • [4] Calibration of Numerical Model for Shoreline Change Prediction Using Satellite Imagery Data
    Sutikno, Sigit
    Murakami, Keisuke
    Handoyo, Dwi Puspo
    Fauzi, Manyuk
    MAKARA JOURNAL OF TECHNOLOGY, 2015, 19 (03): : 113 - 119
  • [5] New Methodology for Shoreline Extraction Using Optical and Radar (SAR) Satellite Imagery
    Zollini, Sara
    Dominici, Donatella
    Alicandro, Maria
    Cuevas-Gonzalez, Maria
    Angelats, Eduard
    Ribas, Francesca
    Simarro, Gonzalo
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2023, 11 (03)
  • [6] Monitoring of Shoreline Change using Satellite Imagery and Aerial Photograph : For the Jukbyeon, Uljin
    Eom, JinAh
    Choi, Jong-Kuk
    Ryu, Joo-Hyung
    Won, Joong-Sun
    KOREAN JOURNAL OF REMOTE SENSING, 2010, 26 (05) : 571 - 580
  • [7] Shoreline Extraction using High Resolution Satellite Imagery at Start Bay, UK
    McAllister, Emma
    Payo, Andres
    Novellino, Alessandro
    Dolphin, Tony
    Medina-Lopez, Encarni
    PROCEEDINGS OF THE 39TH IAHR WORLD CONGRESS, 2022, : 5811 - 5820
  • [8] Extracting Shoreline from Satellite Imagery for GIS Analysis
    Ghorai D.
    Mahapatra M.
    Remote Sensing in Earth Systems Sciences, 2020, 3 (1-2) : 13 - 22
  • [9] Segmentation of satellite imagery of natural scenes using data mining
    Soh, LK
    Tsatsoulis, C
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1999, 37 (02): : 1086 - 1099
  • [10] Detection of Cloud Cover in Satellite Imagery Using Semantic Segmentation
    Jaju, Sanay
    Sahu, Mohit
    Surana, Akshat
    Mishra, Kanak
    Karandikar, Aarti
    Agrawal, Avinash
    INTERNATIONAL JOURNAL OF NEXT-GENERATION COMPUTING, 2022, 13 (05): : 1064 - 1070