Zero-shot sim-to-real transfer using Siamese-Q-Based reinforcement learning

被引:0
|
作者
Zhang, Zhenyu [1 ]
Xie, Shaorong [1 ]
Zhang, Han [1 ]
Luo, Xiangfeng [1 ]
Yu, Hang [1 ]
机构
[1] Shanghai Univ, Sch Comp Engn & Sci, 99 Shangda Rd, Shanghai 200444, Peoples R China
基金
中国国家自然科学基金;
关键词
Reinforcement learning; Representation learning; Simulation to real; Contrastive learning; NETWORK;
D O I
10.1016/j.inffus.2024.102664
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
To address real world decision problems in reinforcement learning, it is common to train a policy in a simulator first for safety. Unfortunately, the sim-real gap hinders effective simulation-to-real transfer without substantial training data. However, collecting real samples of complex tasks is often impractical, and the sample inefficiency of reinforcement learning exacerbates the simulation-to-real problem, even with online interaction or data. Representation learning can improve sample efficiency while keeping generalization by projecting high-dimensional inputs into low-dimensional representations. However, whether trained independently or simultaneously with reinforcement learning, representation learning remains a separate auxiliary task, lacking task-related features and generalization for simulation-to-real transfer. This paper proposes Siamese-Q, a new representation learning method employing Siamese networks and zero-shot simulation-to-real transfer, which narrows the distance between inputs with the same semantics in the latent space with respect to Q values. This allows us to fuse task-related information into the representation and improve the generalization of the policy. Evaluation in virtual and real autonomous vehicle scenarios demonstrates substantial improvements of 19.5% and 94.2% respectively over conventional representation learning, without requiring any real-world observations or on-policy interaction, and enabling reinforcement learning policies trained in simulations transfer to reality.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Grounded action transformation for sim-to-real reinforcement learning
    Josiah P. Hanna
    Siddharth Desai
    Haresh Karnan
    Garrett Warnell
    Peter Stone
    Machine Learning, 2021, 110 : 2469 - 2499
  • [32] Sim-to-Real Transfer Reinforcement Learning for Position Control of Pneumatic Continuum Manipulator
    Cheng, Qiang
    Liu, Hongshuai
    Gao, Xifeng
    Zhang, Ying
    Hao, Lina
    IEEE ACCESS, 2023, 11 : 126110 - 126118
  • [33] Grounded action transformation for sim-to-real reinforcement learning
    Hanna, Josiah P.
    Desai, Siddharth
    Karnan, Haresh
    Warnell, Garrett
    Stone, Peter
    MACHINE LEARNING, 2021, 110 (09) : 2469 - 2499
  • [34] Meta Reinforcement Learning for Sim-to-real Domain Adaptation
    Arndt, Karol
    Hazara, Murtaza
    Ghadirzadeh, Ali
    Kyrki, Ville
    2020 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2020, : 2725 - 2731
  • [35] Sim-to-Real Transfer with Incremental Environment Complexity for Reinforcement Learning of Depth-based Robot Navigation
    Chaffre, Thomas
    Moras, Julien
    Chan-Hon-Tong, Adrien
    Marzat, Julien
    ICINCO: PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON INFORMATICS IN CONTROL, AUTOMATION AND ROBOTICS, 2020, : 314 - 323
  • [36] Efficient Sim-to-Real Transfer in Reinforcement Learning Through Domain Randomization and Domain Adaptation
    Shakerimov, Aidar
    Alizadeh, Tohid
    Varol, Huseyin Atakan
    IEEE ACCESS, 2023, 11 : 136809 - 136824
  • [37] Reinforcement Learning and Sim-to-Real Transfer of Reorientation and Landing Control for Quadruped Robots on Asteroids
    Qi, Ji
    Gao, Haibo
    Su, Huanli
    Huo, Mingying
    Yu, Haitao
    Deng, Zongquan
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2024, 71 (11) : 14392 - 14400
  • [38] Dual Action Policy for Robust Sim-to-Real Reinforcement Learning
    Terence, Ng Wen Zheng
    Chen Jianda
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING-ICANN 2024, PT IV, 2024, 15019 : 369 - 380
  • [39] Torque-Based Deep Reinforcement Learning for Task-and-Robot Agnostic Learning on Bipedal Robots Using Sim-to-Real Transfer
    Kim, Donghyeon
    Berseth, Glen
    Schwartz, Mathew
    Park, Jaeheung
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2023, 8 (10) : 6251 - 6258
  • [40] Siamese Contrastive Embedding Network for Compositional Zero-Shot Learning
    Li, Xiangyu
    Yang, Xu
    Wei, Kun
    Deng, Cheng
    Yang, Muli
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 9316 - 9325