Learning novel object parts model for object categorization

被引:2
|
作者
Soltanpour S. [1 ]
Ebrahimnezhad H. [1 ]
机构
[1] Computer Vision Research Lab., Electrical Engineering Faculty, Sahand University of Technology of Tabriz, Tabriz
关键词
ANFIS; Grammar; MHMM; Object categorization; Parts detection; Structural context;
D O I
10.1109/ISTEL.2010.5734131
中图分类号
学科分类号
摘要
We present a new method to learn the model based on object parts extraction and grammar which can be applied to classification and recognition. Our approach is invariant to the scale and rotation of the objects. We use Structural Context feature to detect object parts. It is done comparing SC histograms of the model and image. We extract oriented triplets from centers of detected parts. We define grammar for these parts using normalize distances and angles between them. We propose and compare two alternative implementations using different classifiers: Hidden Markov Model with mixture of Gaussian outputs (MHMM) and Adaptive Neuro-Fuzzy Inference system (ANFIS) to learn this grammar and estimate parameters of the model for each object class. The proposed method is computationally efficient and it is invariant to scale and rotation. Experimental results demonstrate the privileged performance of the proposed approach against other methods. © 2010 IEEE.
引用
收藏
页码:796 / 800
页数:4
相关论文
共 50 条
  • [21] Unsupervised learning of scene and object planar parts
    Mele, Katarina
    Mayer, Jasna
    ELEKTROTEHNISKI VESTNIK, 2007, 74 (05): : 297 - 302
  • [22] An implicit shape model for combined object categorization and segmentation
    Leibe, Bastian
    Leonardis, Ales
    Schiele, Bernt
    TOWARD CATEGORY-LEVEL OBJECT RECOGNITION, 2006, 4170 : 508 - +
  • [23] LATENT TOPIC VISUAL LANGUAGE MODEL FOR OBJECT CATEGORIZATION
    Wu, Lei
    Yu, Nenghai
    Liu, Jing
    Li, Mingjing
    2011 PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND MULTIMEDIA APPLICATIONS (SIGMAP 2011), 2011,
  • [24] Developing a schema for learning object based on object oriented model of object inheritance
    Daniel, B
    Wu, HG
    3RD IEEE INTERNATIONAL CONFERENCE ON ADVANCED LEARNING TECHNOLOGIES, PROCEEDINGS, 2003, : 439 - 439
  • [25] The subjective experience of object recognition: comparing metacognition for object detection and object categorization
    Julia D. I. Meuwese
    Anouk M. van Loon
    Victor A. F. Lamme
    Johannes J. Fahrenfort
    Attention, Perception, & Psychophysics, 2014, 76 : 1057 - 1068
  • [26] Fine-Grained Visual Categorization by Localizing Object Parts With Single Image
    Zheng, Xiangtao
    Qi, Lei
    Ren, Yutao
    Lu, Xiaoqiang
    IEEE TRANSACTIONS ON MULTIMEDIA, 2021, 23 : 1187 - 1199
  • [27] The subjective experience of object recognition: comparing metacognition for object detection and object categorization
    Meuwese, Julia D. I.
    van Loon, Anouk M.
    Lamme, Victor A. F.
    Fahrenfort, Johannes J.
    ATTENTION PERCEPTION & PSYCHOPHYSICS, 2014, 76 (04) : 1057 - 1068
  • [28] Group-Sensitive Multiple Kernel Learning for Object Categorization
    Yang, Jingjing
    Li, Yuanning
    Tian, Yonghong
    Duan, Lingyu
    Gao, Wen
    2009 IEEE 12TH INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2009, : 436 - 443
  • [29] Neuroimaging evidence for object model verification theory: Role of prefrontal control in visual object categorization
    Ganis, Giorgio
    Schendan, Haline E.
    Kosslyn, Stephen M.
    PSYCHOPHYSIOLOGY, 2006, 43 : S40 - S40
  • [30] Neuroimaging evidence for object model verification theory: Role of prefrontal control in visual object categorization
    Ganis, Giorgio
    Schendan, Haline E.
    Kosslyn, Stephen M.
    NEUROIMAGE, 2007, 34 (01) : 384 - 398