An efficient approximate numerical method for modeling contact of materials with distributed inhomogeneities

被引:0
|
作者
机构
[1] [1,Zhou, Qinghua
[2] Jin, Xiaoqing
[3] Wang, Zhanjiang
[4] Wang, Jiaxu
[5] Keer, Leon M.
[6] 1,Wang, Qian
来源
Jin, X. (jinxq@cqu.edu.cn) | 1600年 / Elsevier Ltd卷 / 51期
基金
中国国家自然科学基金;
关键词
Finite element method - Friction - Geometry - Numerical models - Fatigue of materials;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:19 / 20
相关论文
共 50 条
  • [31] A Multiscale Hybrid Method for materials containing defects and inhomogeneities
    Liu, WJ
    Xin, XJ
    Computational Methods and Experimental Measurements XII, 2005, 41 : 407 - 416
  • [32] Numerical method for the triaxial test of granular materials based on computational contact mechanics
    Pan, Hong-Wu
    Xu, Wen-Jie
    Zhang, Bing-Yin
    COMPUTERS AND GEOTECHNICS, 2021, 138
  • [33] On numerical approximation of a variational-hemivariational inequality modeling contact problems for locking materials
    Barboteu, Mikael
    Han, Weimin
    Migorski, Stanislaw
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 77 (11) : 2894 - 2905
  • [34] Detection of Subsurface Inhomogeneities in Dielectric Materials by the Microwave method
    Nazarchuk, Z. T.
    Dzhala, V. R.
    Synyavs'kyi, A. T.
    MATERIALS SCIENCE, 2014, 49 (04) : 425 - 441
  • [35] An efficient numerical method for distributed-loop models of the urine concentrating mechanism
    Layton, AT
    Layton, HE
    MATHEMATICAL BIOSCIENCES, 2003, 181 (02) : 111 - 132
  • [36] An Efficient Method for Numerical Solutions of Distributed-Order Fractional Differential Equations
    Jibenja, N.
    Yuttanan, B.
    Razzaghi, M.
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2018, 13 (11):
  • [37] APPROXIMATE METHOD OF OPTIMIZING SYSTEMS WITH DISTRIBUTED OBJECTS
    ISHAKOV, IA
    ENGINEERING CYBERNETICS, 1979, 17 (01): : 1 - 6
  • [38] Numerical modeling of dynamic frictional rolling contact with an explicit finite element method
    Yang, Zhen
    Deng, Xiangyun
    Li, Zili
    TRIBOLOGY INTERNATIONAL, 2019, 129 : 214 - 231
  • [39] A microstructure based numerical method for constitutive modeling of composite and porous materials
    Lee, K
    Ghosh, S
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 1999, 272 (01): : 120 - 133
  • [40] Fracture modeling of isotropic functionally graded materials by the numerical manifold method
    Zhang, H. H.
    Ma, G. W.
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2014, 38 : 61 - 71