Bipartite theory on Domination in complement of a graph

被引:0
|
作者
Swaminathan, V. [1 ]
Venkatakrishnan, Y.B. [2 ]
机构
[1] Ramanujan Research Centre, S.N. College, Madurai, India
[2] Department of Mathematics, SASTRA University, Tanjore, 613 402, India
来源
World Academy of Science, Engineering and Technology | 2009年 / 35卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
3
引用
收藏
页码:1058 / 1059
相关论文
共 50 条
  • [21] Bipartite Theory of Graphs: Outer-Independent Domination
    Krzywkowski, Marcin
    Venkatakrishnan, Yanamandram B.
    NATIONAL ACADEMY SCIENCE LETTERS-INDIA, 2015, 38 (02): : 169 - 172
  • [22] Regular Graphs with a Complete Bipartite Graph as a Star Complement
    Xiaona FANG
    Lihua YOU
    Rangwei WU
    Yufei HUANG
    JournalofMathematicalResearchwithApplications, 2023, 43 (05) : 505 - 521
  • [23] The Ihara zeta function of the complement of a semiregular bipartite graph
    Li, Deqiong
    Hou, Yaoping
    Wang, Dijian
    DISCRETE MATHEMATICS, 2021, 344 (12)
  • [24] Roman domination subdivision number of a graph and its complement
    Khodkar, Abdollah
    Mobaraky, B. P.
    Sheikholeslami, S. M.
    ARS COMBINATORIA, 2013, 111 : 97 - 106
  • [25] Bipartite Theory of Graphs: Outer-Independent Domination
    Marcin Krzywkowski
    Yanamandram B. Venkatakrishnan
    National Academy Science Letters, 2015, 38 : 169 - 172
  • [26] The product of the total restrained domination numbers of a graph and its complement
    Hattingh, Johannes H.
    Joubert, Ernst J.
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2018, 70 : 297 - 308
  • [27] The number of spanning trees in Kn-complement of a bipartite graph
    Gong, Helin
    Gong, Yu
    Ge, Jun
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2024, 60 (02) : 541 - 554
  • [28] Maximal graphs with a prescribed complete bipartite graph as a star complement
    Fang, Xiaona
    You, Lihua
    Huang, Yufei
    AIMS MATHEMATICS, 2021, 6 (07): : 7153 - 7169
  • [29] An inequality that relates the size of a bipartite graph with its order and restrained domination number
    Joubert, Ernst J.
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2016, 31 (01) : 44 - 51
  • [30] An inequality that relates the size of a bipartite graph with its order and restrained domination number
    Ernst J. Joubert
    Journal of Combinatorial Optimization, 2016, 31 : 44 - 51