Pieri's formula for generalized Schur polynomials

被引:0
|
作者
Numata, Yasuhide [1 ]
机构
[1] Department of Mathematics, Hokkaido University, Kita 10, Nishi 8, Kita-Ku, Sapporo, Hokkaido 060-0810, Japan
来源
Journal of Algebraic Combinatorics | 2007年 / 26卷 / 01期
关键词
Young's lattice; the lattice of all Young diagrams; has the Robinson-Schensted-Knuth correspondence; the correspondence between certain matrices and pairs of semi-standard Young tableaux with the same shape. Fomin introduced generalized Schur operators to generalize the Robinson-Schensted- Knuth correspondence. In this sense; generalized Schur operators are generalizations of semi-standard Young tableaux. We define a generalization of Schur polynomials as expansion coefficients of generalized Schur operators. We show that the commutation relation of generalized Schur operators implies Pieri's formula for generalized Schur polynomials. © 2006 Springer Science+Business Media; LLC;
D O I
暂无
中图分类号
学科分类号
摘要
Journal article (JA)
引用
收藏
页码:27 / 45
相关论文
共 50 条
  • [31] The torsion free Pieri formula
    Britten, DJ
    Lemire, FW
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1998, 50 (02): : 266 - 289
  • [32] SPREADS ASSOCIATED WITH THE PIERI FORMULA
    BOFFI, G
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1984, 3D (01): : 87 - 109
  • [33] On generalized Schur's partitions
    Cao, Zhu
    Chen, Shi-Chao
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2017, 13 (06) : 1381 - 1391
  • [34] The Schur algorithm for generalized Schur functions III:: J-unitary matrix polynomials on the circle
    Alpay, D
    Azizov, T
    Dijksma, A
    Langer, H
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 369 : 113 - 144
  • [35] The Mehler Formula for the Generalized Clifford–Hermite Polynomials
    F. Brackx
    N. de Schepper
    K. I. Kou
    F. Sommen
    Acta Mathematica Sinica, English Series, 2007, 23 : 697 - 704
  • [36] On F-Polynomials for Generalized Quantum Cluster Algebras and Gupta's Formula
    Fu, Changjian
    Peng, Liangang
    Ye, Huihui
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2024, 20
  • [37] Applications of minor-summation formula II. Pfaffians and Schur polynomials
    Ishikawa, M
    Wakayama, M
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1999, 88 (01) : 136 - 157
  • [38] Pieri rule for the factorial Schur P-functions
    Cho, Soojin
    Ikeda, Takeshi
    SCHUBERT VARIETIES, EQUIVARIANT COHOMOLOGY AND CHARACTERISTIC CLASSES, IMPANGA 15, 2018, : 25 - 48
  • [39] FACTORIZATIONS OF PIERI RULES FOR MACDONALD POLYNOMIALS
    GARSIA, AM
    HAIMAN, M
    DISCRETE MATHEMATICS, 1995, 139 (1-3) : 219 - 256
  • [40] A NECESSARY AND SUFFICIENT CONDITION FOR SCHUR INVARIANCE AND GENERALIZED STABILITY OF POLYTOPES OF POLYNOMIALS
    BARTLETT, AC
    HOLLOT, CV
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1988, 33 (06) : 575 - 578