Cramer-Rao Bounds of key parameters estimation for Galileo SAR signal

被引:0
|
作者
Wang, Kun [1 ]
Wu, Si-Liang [1 ]
Tian, Jing [1 ]
机构
[1] Radar Research Laboratory, Beijing Institute of Technology, Beijing 100081, China
来源
关键词
Computation theory - Time of arrival - Delta functions - Frequency estimation - Frequency domain analysis - Time domain analysis - Fisher information matrix - Cramer-Rao bounds - Intelligent systems;
D O I
暂无
中图分类号
学科分类号
摘要
Considering the uncertainty of message bit width, the Cramer-Rao Bounds (CRBs) for the estimation of message bit width, frequency of arrival (FOA) and time of arrival (TOA) from Galileo search and rescue (SAR) signal were researched. General formula for calculating the elements of Fisher information matrix was derived first. Then the calculation expressions for the Fisher matrix elements of Galileo SAR signal were acquired. When calculating the sum of the square of Dirac delta function, the properties of Dirac delta function and Parseval's theorem were used to transform the computation from time-domain to frequency-domain. Then the closed-form analytical solutions of the CRBs for the estimation of message bit width, FOA and TOA were derived. Numerical calculation and Monte Carlo simulation results validate the effectiveness of the CRBs above which can be used to evaluate the performance of message bit width, FOA and TOA estimation algorithm.
引用
收藏
页码:2761 / 2767
相关论文
共 50 条
  • [21] Cramer-Rao bounds in the parametric estimation of fading radiotransmission channels
    Gini, F
    Luise, M
    Reggiannini, R
    IEEE TRANSACTIONS ON COMMUNICATIONS, 1998, 46 (10) : 1390 - 1398
  • [22] Cramer-Rao bounds for shallow water environmental parameter estimation
    Daly, PM
    Baggeroer, AB
    OCEANS '97 MTS/IEEE CONFERENCE PROCEEDINGS, VOLS 1 AND 2, 1997, : 430 - 435
  • [23] Cramer-Rao bounds for parametric shape estimation in inverse problems
    Ye, JC
    Bresler, Y
    Moulin, P
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2003, 12 (01) : 71 - 84
  • [24] CRAMER-RAO BOUNDS FOR BISTATIC RADARS
    Greco, Maria
    Gini, Fulvio
    Farina, Alfonso
    2009 3RD IEEE INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING (CAMSAP), 2009, : 157 - 160
  • [25] Cramer-Rao Bounds for Holographic Positioning
    D'Amico, Antonio A. A.
    Torres, Andrea de Jesus
    Sanguinetti, Luca
    Win, Moe
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2022, 70 : 5518 - 5532
  • [26] Cramer-Rao bounds for synchronization of rotations
    Boumal, Nicolas
    Singer, Amit
    Absil, P. -A.
    Blondel, Vincent D.
    INFORMATION AND INFERENCE-A JOURNAL OF THE IMA, 2014, 3 (01) : 1 - 39
  • [27] Cramer-Rao Lower Bounds for Unconstrained and Constrained Quaternion Parameters
    Sun, Shuning
    Xu, Dongpo
    Diao, Qiankun
    Mandic, Danilo P.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2025, 73 : 508 - 518
  • [28] Posterior Cramer-Rao bounds for state estimation with quantized measurement
    Duan, Zhansheng
    Jilkov, Vesselin P.
    Li, X. Rong
    PROCEEDINGS OF THE 40TH SOUTHEASTERN SYMPOSIUM ON SYSTEM THEORY, 2008, : 376 - 380
  • [29] CRAMER-RAO BOUNDS ON MENSURATION ERRORS
    GONSALVES, RA
    APPLIED OPTICS, 1976, 15 (05): : 1270 - 1275
  • [30] Computing Constrained Cramer-Rao Bounds
    Tune, Paul
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (10) : 5543 - 5548