ON GENERALIZED BIHYPERBOLIC THIRD-ORDER JACOBSTHAL POLYNOMIALS

被引:0
|
作者
Cerda-Morales, Gamaliel [1 ]
机构
[1] Instituto de Matemáticas, Pontificia Universidad Católica de Valparaíso, Blanco Viel 596, Valparaíso, Chile
来源
关键词
Compilation and indexing terms; Copyright 2025 Elsevier Inc;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [21] Identities for Third Order Jacobsthal Quaternions
    Gamaliel Cerda-Morales
    Advances in Applied Clifford Algebras, 2017, 27 : 1043 - 1053
  • [22] Identities for Third Order Jacobsthal Quaternions
    Cerda-Morales, Gamaliel
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2017, 27 (02) : 1043 - 1053
  • [23] The third-order factorable core of polynomials over finite fields
    Gomez-Calderon, J
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1998, 74 (01) : 16 - 19
  • [24] Study of the dynamics of third-order iterative methods on quadratic polynomials
    Cordero, Alicia
    Torregrosa, Juan R.
    Vindel, Pura
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2012, 89 (13-14) : 1826 - 1836
  • [25] One-parameter generalization of the bihyperbolic Jacobsthal numbers
    Brod, Dorota
    Szynal-Liana, Anetta
    Wloch, Iwona
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2023, 16 (05)
  • [26] Suppression of third-order intermodulation in a klystron by third-order injection
    Bhattacharjee, S
    Marchewka, C
    Welter, J
    Kowalczyk, R
    Wilsen, CB
    Lau, YY
    Booske, JH
    Singh, A
    Scharer, JE
    Gilgenbach, RM
    Neumann, MJ
    Keyser, MW
    PHYSICAL REVIEW LETTERS, 2003, 90 (09)
  • [27] Symmetric Third-Order Recurring Sequences, Chebyshev Polynomials, and Riordan Arrays
    Barry, Paul
    JOURNAL OF INTEGER SEQUENCES, 2009, 12 (08)
  • [28] ULTRASPHERICAL POLYNOMIALS APPROACH TO STUDY OF THIRD-ORDER NONLINEAR-SYSTEMS
    SRIRANGARAJAN, HR
    SRINIVASAN, P
    DASARATHY, BV
    JOURNAL OF SOUND AND VIBRATION, 1975, 40 (02) : 167 - 172
  • [29] A third-order bias corrected estimate in generalized linear models
    Gauss M. Cordeiro
    Lúcia P. Barroso
    TEST, 2007, 16 : 76 - 89
  • [30] Third-Order Differential Superordination Involving the Generalized Bessel Functions
    Huo Tang
    H. M. Srivastava
    Erhan Deniz
    Shu-Hai Li
    Bulletin of the Malaysian Mathematical Sciences Society, 2015, 38 : 1669 - 1688