Surveying neuro-symbolic approaches for reliable artificial intelligence of things

被引:3
|
作者
Lu, Zhen [1 ]
Afridi, Imran [2 ]
Kang, Hong Jin [3 ]
Ruchkin, Ivan [4 ]
Zheng, Xi [1 ,2 ]
机构
[1] Faculty of Data Science, City University of Macau, Estrada de Coelho do Amaral, 999078, China
[2] School of Computing, Macquarie University, Balaclava Rd, Sydney,NSW,2109, Australia
[3] Computer Science, University of California Los Angeles, 404 Westwood Plaza, Los Angeles,CA,90095, United States
[4] Electrical and Computer Engineering, University of Florida, 1889 Museum Rd, Gainesville,FL,32611, United States
关键词
Deep learning;
D O I
10.1007/s40860-024-00231-1
中图分类号
学科分类号
摘要
The integration of Artificial Intelligence (AI) with the Internet of Things (IoT), known as the Artificial Intelligence of Things (AIoT), enhances the devices’ processing and analysis capabilities and disrupts such sectors as healthcare, industry, and oil. However, AIoT’s complexity and scale are challenging for traditional machine learning (ML). Deep learning offers a solution but has limited testability, verifiability, and interpretability. In turn, the neuro-symbolic paradigm addresses these challenges by combining the robustness of symbolic AI with the flexibility of DL, enabling AI systems to reason, make decisions, and generalize knowledge from large datasets better. This paper reviews state-of-the-art DL models for IoT, identifies their limitations, and explores how neuro-symbolic methods can overcome them. It also discusses key challenges and research opportunities in enhancing AIoT reliability with neuro-symbolic approaches, including hard-coded symbolic AI, multimodal sensor data, biased interpretability, trading-off interpretability, and performance, complexity in integrating neural networks and symbolic AI, and ethical and societal challenges.
引用
收藏
页码:257 / 279
页数:22
相关论文
共 50 条
  • [31] Crowd evacuation with human-level intelligence via neuro-symbolic approach
    Bahamid, Alala
    Ibrahim, Azhar Mohd
    Shafie, Amir Akramin
    ADVANCED ENGINEERING INFORMATICS, 2024, 60
  • [32] Neuro-symbolic AI for the smart city
    Morel, Gilles
    CARBON-NEUTRAL CITIES - ENERGY EFFICIENCY AND RENEWABLES IN THE DIGITAL ERA (CISBAT 2021), 2021, 2042
  • [33] Conversational Neuro-Symbolic Commonsense Reasoning
    Arabshahi, Forough
    Lee, Jennifer
    Gawarecki, Mikayla
    Mazaitis, Kathryn
    Azaria, Amos
    Mitchell, Tom
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 4902 - 4911
  • [34] Neuro-Symbolic Models for Sentiment Analysis
    Kocon, Jan
    Baran, Joanna
    Gruza, Marcin
    Janz, Arkadiusz
    Kajstura, Michal
    Kazienko, Przemyslaw
    Korczynski, Wojciech
    Milkowski, Piotr
    Piasecki, Maciej
    Szolomicka, Joanna
    COMPUTATIONAL SCIENCE, ICCS 2022, PT II, 2022, : 667 - 681
  • [35] Neuro-Symbolic Class Expression Learning
    Demir, Caglar
    Ngomo, Axel-Cyrille Ngonga
    PROCEEDINGS OF THE THIRTY-SECOND INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2023, 2023, : 3624 - 3632
  • [36] Neuro-Symbolic AI for Military Applications
    Hagos, Desta Haileselassie
    Rawat, Danda B.
    IEEE Transactions on Artificial Intelligence, 2024, 5 (12): : 6012 - 6026
  • [37] One Possibility of a Neuro-Symbolic Integration
    Samsonovich, Alexei, V
    BIOLOGICALLY INSPIRED COGNITIVE ARCHITECTURES 2021, 2022, 1032 : 428 - 437
  • [38] Neuro-Symbolic Representations for Information Retrieval
    Dietz, Laura
    Bast, Hannah
    Chatterjee, Shubham
    Dalton, Jeff
    Nie, Jian-Yun
    Nogueira, Rodrigo
    PROCEEDINGS OF THE 46TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, SIGIR 2023, 2023, : 3436 - 3439
  • [39] Towards Neuro-Symbolic Video Understanding
    Choi, Minkyu
    Goel, Harsh
    Omama, Mohammad
    Yang, Yunhao
    Shah, Sahil
    Chinchali, Sandeep
    COMPUTER VISION - ECCV 2024, PT LXXVIII, 2025, 15136 : 220 - 236
  • [40] Tools and experiments for hybrid neuro-symbolic processing
    Alexandre, F
    NINTH IEEE INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 1997, : 338 - 345