Mixed-precision pre-pivoting strategy for the LU factorization

被引:0
|
作者
Sahraneshinsamani, Nima [1 ]
Catalán, Sandra [1 ]
Herrero, José R. [2 ]
机构
[1] Departament d’Enginyeria i Ciència dels Computadors, Universitat Jaume I, Av/ Vicent Sos Baynat, Comunitat Valenciana, Castelló de la Plana,12071, Spain
[2] Departament d’Arquitectura de Computadors, Universitat Politècnica de Catalunya, C/ Jordi Girona 1-3, Catalunya, Barcelona,08034, Spain
来源
Journal of Supercomputing | 2025年 / 81卷 / 01期
关键词
Computer graphics equipment - Digital arithmetic - Lutetium alloys - Matrix algebra - Matrix factorization;
D O I
10.1007/s11227-024-06523-w
中图分类号
学科分类号
摘要
This paper investigates the efficient application of half-precision floating-point (FP16) arithmetic on GPUs for boosting LU decompositions in double (FP64) precision. Addressing the motivation to enhance computational efficiency, we introduce two novel algorithms: Pre-Pivoted LU (PRP) and Mixed-precision Panel Factorization (MPF). Deployed in both hybrid CPU-GPU setups and native GPU-only configurations, PRP identifies pivot lists through LU decomposition computed in reduced precision and subsequently reorders matrix rows in FP64 precision before executing LU decomposition without pivoting. Two variants of PRP, namely hPRP and xPRP, are introduced, differing in their computation of pivot lists in full half-precision or mixed half-single precision. The MPF algorithm generates FP64 LU factorization while internally utilizing hPRP for panel factorization, showcasing accuracy on par with standard DGETRF but with superior speed. The study further explores auxiliary functions required for the native mode implementation of PRP variants and MPF. © The Author(s) 2024.
引用
收藏
相关论文
共 50 条
  • [1] Updating an LU factorization with pivoting
    Quintana-Orti, Enrique S.
    Van De Geijn, Robert A.
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2008, 35 (02): : 1 - 16
  • [2] Geostatistical Modeling and Prediction Using Mixed-Precision Tile Cholesky Factorization
    Abdulah, Sameh
    Ltaief, Hatem
    Sun, Ying
    Genton, Marc G.
    Keyes, David E.
    2019 IEEE 26TH INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING, DATA, AND ANALYTICS (HIPC), 2019, : 152 - 162
  • [3] Reduced Precision DWC: An Efficient Hardening Strategy for Mixed-Precision Architectures
    dos Santos, Fernando F.
    Brandalero, Marcelo
    Sullivan, Michael B.
    Basso, Pedro M.
    Huebner, Michael
    Carro, Luigi
    Rech, Paolo
    IEEE TRANSACTIONS ON COMPUTERS, 2022, 71 (03) : 573 - 586
  • [4] Managing the Complexity of Lookahead for LU Factorization with Pivoting
    Chan, Ernie
    van de Geijn, Robert
    Chapman, Andrew
    SPAA '10: PROCEEDINGS OF THE TWENTY-SECOND ANNUAL SYMPOSIUM ON PARALLELISM IN ALGORITHMS AND ARCHITECTURES, 2010, : 200 - 208
  • [5] Using Additive Modifications in LU Factorization Instead of Pivoting
    Lindquist, Neil
    Luszczek, Piotr
    Dongarra, Jack
    PROCEEDINGS OF THE 37TH INTERNATIONAL CONFERENCE ON SUPERCOMPUTING, ACM ICS 2023, 2023, : 14 - 24
  • [6] A Supernodal Approach to Incomplete LU Factorization with Partial Pivoting
    Li, Xiaoye S.
    Shao, Meiyue
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2011, 37 (04):
  • [7] Parallel symbolic factorization for sparse lu with static pivoting
    Grigori, Laura
    Demmel, James W.
    Li, Xiaoye S.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2007, 29 (03): : 1289 - 1314
  • [8] LU Factorization with Partial Pivoting for a Multicore System with Accelerators
    Kurzak, Jakub
    Luszczek, Piotr
    Faverge, Mathieu
    Dongarra, Jack
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2013, 24 (08) : 1613 - 1621
  • [9] Stability and Sensitivity of Tridiagonal LU Factorization without Pivoting
    M. Isabel Bueno
    Froilán M. Dopico
    BIT Numerical Mathematics, 2004, 44 : 651 - 673
  • [10] Stability and sensitivity of tridiagonal LU factorization without pivoting
    Bueno, MI
    Dopico, FM
    BIT NUMERICAL MATHEMATICS, 2004, 44 (04) : 651 - 673