Investigating seismic performance of a novel self-centering shear link in EBF utilizing experimental and numerical simulation

被引:6
|
作者
Hu, Shujun [1 ]
Liu, Shangwen [1 ]
Zeng, Sizhi [2 ]
Zhang, Bo [3 ]
Xu, Zhenhuan [1 ]
机构
[1] Nanchang Univ, Sch Infrastruct Engn, Nanchang 330031, Peoples R China
[2] Zhongmei Engn Grp Co Ltd, Nanchang 330001, Peoples R China
[3] China Nerin Engn Co Ltd, Nanchang 330031, Jiangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Self-centering shear link; Self-centering SMA brace; Very short shear link with shear slotted bolted; connection; Hysteresis curve; Mechanical model;
D O I
10.1016/j.jcsr.2024.109129
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This paper introduces an innovative self-centering shear link (SC-SL) that combines the self-centering SMA braces (SCB) and very short shear link with shear slotted bolted connection (VSSL-SSBC), commonly used in the eccentrically braced frames (EBFs). Four SC-SL specimens differing in bolt pretension and loading displacement were designed to investigate the seismic performance, enabling the acquisition of hysteresis curves, skeletal curves, secant stiffness curves and energy dissipation capacity of the SC-SL. Additionally, extensive parametric studies, validated by finite element (FE) modeling technique, were conducted to investigate the main influencing parameters of the SC-SL. Test results indicated that the VSSL in the VSSL-SSBC remained in the slip stage without any relative deformation and yielding during the slip stage, whereas slip deformation, web yield, and web and flange buckling occurred during the non-slip stage. The deformation and stress of the SMA wires in the SCB increased gradually and remained in tension throughout the loading process. Hysteresis curves of the SC-SL exhibited elastic and elastic-plastic during the slip stage, and elastic, elastic-plastic, and strengthening stages during the non-slip stage. In addition, enlarging the SMA areas can enhance the bearing capacity and reduce the residual deformation of SC-SL during both slip and non-slip stage. Finally, the simplified mechanical models of SC-SL were proposed and validated, indicated that the proposed equation was in good agreement with the FE simulation results, with a maximum error of 8.99 % and 4.86 % during the slip and non-slip stage, respectively.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Experimental and numerical study on the seismic behavior of an external prestressed self-centering frame structure
    Xia, Wanqiu
    Lu, Liang
    Liu, Xia
    JOURNAL OF BUILDING ENGINEERING, 2023, 76
  • [32] Seismic performance of self-centering braced rocking frame with novel self-centering friction dampers characterized by low-secondary stiffness
    Zhang, Zhenhua
    Zhan, Yunmin
    Shen, Hu
    Qian, Hui
    Sheng, Piao
    STRUCTURES, 2023, 57
  • [33] Seismic performance of SMA-prestressed self-centering beam-column joints: Experimental and numerical study
    Feng, Yutao
    Li, Weibin
    JOURNAL OF CONSTRUCTIONAL STEEL RESEARCH, 2025, 226
  • [34] DESIGN AND PERFORMANCE INVESTIGATION ON NOVEL PREFABRICATED SELF-CENTERING RC SHEAR WALL
    Xiao, Shui-Jing
    Feng, Peng
    Gongcheng Lixue/Engineering Mechanics, 2024, 41 (11): : 116 - 124
  • [35] Experimental Study of Seismic Performance of an Innovative Low-Damage Self-Centering Composite Steel Plate Shear Wall
    Katrangi, Mahmoud
    Khanmohammadi, Mohammad
    JOURNAL OF STRUCTURAL ENGINEERING, 2024, 150 (01)
  • [36] Seismic demand assessment of self-centering steel plate shear walls
    Jalali, S. A.
    Darvishan, E.
    JOURNAL OF CONSTRUCTIONAL STEEL RESEARCH, 2019, 162
  • [37] Self-centering steel plate shear walls for improving seismic resilience
    Clayton, Patricia M.
    Dowden, Daniel M.
    Li, Chao-Hsien
    Berman, Jeffrey W.
    Bruneau, Michel
    Lowes, Laura N.
    Tsai, Keh-Chuan
    FRONTIERS OF STRUCTURAL AND CIVIL ENGINEERING, 2016, 10 (03) : 283 - 290
  • [38] Lateral Performance of Self-Centering Steel-Timber Hybrid Shear Walls with Slip-Friction Dampers: Experimental Investigation and Numerical Simulation
    Li Z.
    Chen F.
    He M.
    Zhou R.
    Cui Y.
    Sun Y.
    He G.
    Journal of Structural Engineering (United States), 2021, 147 (01):
  • [39] Self-centering steel plate shear walls for improving seismic resilience
    Patricia M. Clayton
    Daniel M. Dowden
    Chao-Hsien Li
    Jeffrey W. Berman
    Michel Bruneau
    Laura N. Lowes
    Keh-Chuan Tsai
    Frontiers of Structural and Civil Engineering, 2016, 10 : 283 - 290
  • [40] Self-centering steel plate shear walls for improving seismic resilience
    Patricia MCLAYTON
    Daniel MDOWDEN
    ChaoHsien LI
    Jeffrey WBERMAN
    Michel BRUNEAU
    Laura NLOWES
    KehChuan TSAI
    Frontiers of Structural and Civil Engineering, 2016, 10 (03) : 283 - 290