Temporal evolution of the turbulence interface of a turbulent plane jet

被引:0
|
作者
Xie, Yuanliang [1 ]
Zhang, Xinxian [2 ]
Xiong, Xue-Lu [1 ]
Zhou, Yi [1 ]
机构
[1] School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing,210094, China
[2] Institute of Applied Physics and Computational Mathematics, Beijing,100094, China
关键词
Vortex flow;
D O I
10.1017/jfm.2024.1107
中图分类号
学科分类号
摘要
Direct numerical simulations are performed to explore the evolution behaviour of the turbulent/non-turbulent interface (TNTI) in a temporally evolving turbulent plane jet, using the evolution equation for the TNTI surface area. A novel algorithm is used to calculate the surface area of the TNTI and entrainment flux. It is shown that the surface area remains relatively constant, which leads to the mean entrainment velocity being inversely proportional to the square root of time. On average, the effects of the stretching and curvature/viscous terms on the TNTI area roughly counterbalance each other, while the curvature/inviscid term associated with vortex stretching is virtually zero. More specifically, the stretching term contributes to the production of the surface area, while the curvature/viscous term is associated with a destruction in the surface area. The local effect of the curvature/viscous term exhibits high spatial intermittency with small-scale extreme/intense events, whereas the effect of the large-scale stretching term is more continuous. To shed light on the contribution of curvature/viscous term to the evolution of the surface area, we decompose it into three components. The effect of the curvature/normal diffusion term (the curvature/viscous dissipation term) in the bulging regions (the valley regions) mainly contributes to the production of the area. The continuous decrease of the average mean curvature is associated with the production of the bulging regions and the destruction of the valley regions. Finally, although the entrainment velocity is mainly dominated by the normal diffusion effect, all three components related to the viscous effect are indispensable to the production and destruction of the TNTI area. This numerical study contributes to a better understanding of the evolution of the TNTI area. © The Author(s), 2024.
引用
收藏
相关论文
共 50 条
  • [41] Layered structure of turbulent plane wall jet
    Wei, Tie
    Wang, Yanxing
    Yang, Xiang I. A.
    INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2021, 92
  • [42] Entropy generation in a plane turbulent oscillating jet
    Cervantes, J
    Solorio, F
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2002, 45 (15) : 3125 - 3129
  • [43] MEASUREMENTS OF TURBULENT PRANDTL NUMBER IN A PLANE JET
    BROWNE, LWB
    ANTONIA, RA
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 1983, 105 (03): : 663 - 665
  • [44] NUMERICAL-SIMULATION OF A TURBULENT PLANE JET
    COMTE, P
    LESIEUR, M
    CHOLLET, JP
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II, 1987, 305 (12): : 1037 - 1044
  • [45] PARTICLE TRANSPORT ACROSS A PLANE TURBULENT JET
    MILLS, AF
    LAU, HK
    INDUSTRIAL & ENGINEERING CHEMISTRY FUNDAMENTALS, 1975, 14 (02): : 134 - 136
  • [46] EXPERIMENTAL STUDY OF A TURBULENT PLANE BUOYANT JET
    KOTSOVINOS, NE
    LIST, EJ
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1975, 20 (11): : 1429 - 1429
  • [47] Coherent structures in a compressible turbulent plane jet
    Liu, Qilin
    Lai, Huanxin
    PHYSICS OF FLUIDS, 2021, 33 (10)
  • [48] BUDGET OF THE TEMPERATURE VARIANCE IN A TURBULENT PLANE JET
    ANTONIA, RA
    BROWNE, LWB
    CHAMBERS, AJ
    RAJAGOPALAN, S
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1983, 26 (01) : 41 - 48
  • [49] INTERACTING TURBULENT SHEAR LAYERS IN A PLANE JET
    WEIR, AD
    WOOD, DH
    BRADSHAW, P
    JOURNAL OF FLUID MECHANICS, 1981, 107 (JUN) : 237 - 260
  • [50] SPREAD OF A HEATED PLANE TURBULENT JET - REPLY
    DAVIES, AE
    KEFFER, JF
    BAINES, WD
    PHYSICS OF FLUIDS, 1976, 19 (05) : 768 - 768