Mixed ion-electron conductive materials: A path to higher energy density all-solid-state lithium-ion batteries

被引:0
|
作者
Kizilaslan, Abdulkadir [1 ,2 ,3 ]
Kizilaslan, Recep [4 ]
Miura, Akira [3 ]
Tadanaga, Kiyoharu [3 ]
机构
[1] Sakarya Univ, Met & Mat Sci Dept, Esentepe Campus, TR-54187 Sakarya, Turkiye
[2] Sakarya Univ Res, Dev & Applicat Ctr SARGEM, Esentepe Campus, TR-54187 Sakarya, Turkiye
[3] Hokkaido Univ, Fac Engn, N13W8, Sapporo 0608628, Japan
[4] Amer Univ Middle East, Coll Engn & Technol, Egaila 54200, Kuwait
关键词
Mixed ion-electron conductors; Electrode materials; Energy storage; Solid-state batteries; OXIDE FUEL-CELLS; PROMISING ANODE MATERIAL; INTERPHASE FORMATION; LIQUID-PHASE; METAL ANODE; ELECTROCHEMICAL PROPERTIES; PEDOT PSS; CATHODE; STABILITY; PERFORMANCE;
D O I
10.1016/j.nantod.2024.102556
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The cathode of conventional lithium-ion batteries(LIBs) consist of three components including active materials, binders, and electron conductive agents. Binders and conductive agents, which are not directly involved in Faradaic reactions, should be minimized to incorporate more active materials into the electrode. Unlike conventional LIBs, in all-solid-state batteries(ASSBs) - considered as the next-generation batteries-, there is no liquid electrolyte to impart ionic conductivity through wetting the electrodes. Therefore, cathodes for ASSBs require both ion and electron-conducting additives to facilitate charge transport which complicates the preparation of the cathode with intimate triple contact between active material, ion conductive agent and electron conductive agent. In this perspective, mixed ion-electron conductive(MIEC) materials can be regarded as intrinsic ionelectron conductors for electrodes to ease the cathode preparation, boost gravimetric/volumetric energy density, and dig the path to monocomponent electrodes -solely active materials-. This review covers the potential of MIEC materials to be utilized as active material, binder, interlayer, and conductive scaffold to boost the electrochemical performance of solid-state LIBs. Besides, the potential of ASSBs with monocomponent electrodes was evaluated from the perspective of MIEC materials. Moreover, the feasibility of 2D structures were evaluated as MIEC materials for the ASSB electrodes. The concept of MIEC was not be confined to intrinsic MIEC materials but the materials that turned into MIEC by compositing, doping or heat-treatment were considered as MIEC materials in this study.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] The interfacial behaviours of all-solid-state lithium ion batteries
    Bai, Lixiong
    Xue, Wendong
    Li, Yan
    Liu, Xiaoguang
    Li, Yong
    Sun, Jialin
    CERAMICS INTERNATIONAL, 2018, 44 (07) : 7319 - 7328
  • [22] Solid electrolyte based on 2-adamantanone for all-solid-state lithium-ion batteries
    Bardenhagen, Ingo
    Soto, Marc
    Langer, Frederieke
    Koschek, Katharina
    Schwenzel, Julian
    IONICS, 2022, 28 (08) : 3615 - 3621
  • [23] Solid electrolyte based on 2-adamantanone for all-solid-state lithium-ion batteries
    Ingo Bardenhagen
    Marc Soto
    Frederieke Langer
    Katharina Koschek
    Julian Schwenzel
    Ionics, 2022, 28 : 3615 - 3621
  • [24] Computational Design of an Affordable, Lightweight Solid Electrolyte for All-Solid-State Lithium-Ion Batteries
    Sradhasagar, Siddharth
    Pati, Soobhankar
    Roy, Amritendu
    JOURNAL OF PHYSICAL CHEMISTRY C, 2024, 128 (37): : 15242 - 15254
  • [25] The Fabrication of All-Solid-State Lithium-Ion Batteries via Spark Plasma Sintering
    Wei, Xialu
    Rechtin, Jack
    Olevsky, Eugene A.
    METALS, 2017, 7 (09)
  • [26] Simulation of All-Solid-State Lithium-Ion Batteries With Fastening Stress and Volume Expansion
    Nunoshita, Keita
    Hirata, Ryusei
    So, Magnus
    Park, Kayoung
    Liu, Xuanchen
    Kimura, Naoki
    Inoue, Gen
    Tsuge, Yoshifumi
    JOURNAL OF ELECTROCHEMICAL ENERGY CONVERSION AND STORAGE, 2022, 19 (02)
  • [27] Synchronized electrospinning and electrospraying technique for manufacturing of all-solid-state lithium-ion batteries
    Hafner, Simon
    Guthrey, Harvey
    Lee, Se-Hee
    Ban, Chunmei
    JOURNAL OF POWER SOURCES, 2019, 431 : 17 - 24
  • [28] Crystalline Electrolyte Boosts High Performance of All-Solid-State Lithium-Ion Batteries
    Luo, Junfeng
    Chang, Yi
    Shi, Jing-Wen
    Wang, Xiaojin
    Huang, Haiqi
    Zhang, Yuanyuan
    Wang, Xiaowei
    Zhang, Jiafeng
    Huang, Yu-Xi
    Zhao, Ruirui
    NANO LETTERS, 2024, 24 (47) : 15035 - 15042
  • [29] Fluorine-Doped Antiperovskite Electrolyte for All-Solid-State Lithium-Ion Batteries
    Li, Yutao
    Zhou, Weidong
    Xin, Sen
    Li, Shuai
    Zhu, Jinlong
    Lu, Xujie
    Cui, Zhiming
    Jia, Quanxi
    Zhou, Jianshi
    Zhao, Yusheng
    Goodenough, John B.
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (34) : 9965 - 9968
  • [30] Fabrication of all-solid-state amorphous thin-film Lithium-ion batteries
    Tsuji, Kenta
    Yoshida, Masayasu
    Kanno, Isaku
    20TH INTERNATIONAL CONFERENCE ON MICRO AND NANOTECHNOLOGY FOR POWER GENERATION AND ENERGY CONVERSION APPLICATIONS (POWERMEMS 2021), 2021, : 216 - 219