Mixed ion-electron conductive materials: A path to higher energy density all-solid-state lithium-ion batteries

被引:0
|
作者
Kizilaslan, Abdulkadir [1 ,2 ,3 ]
Kizilaslan, Recep [4 ]
Miura, Akira [3 ]
Tadanaga, Kiyoharu [3 ]
机构
[1] Sakarya Univ, Met & Mat Sci Dept, Esentepe Campus, TR-54187 Sakarya, Turkiye
[2] Sakarya Univ Res, Dev & Applicat Ctr SARGEM, Esentepe Campus, TR-54187 Sakarya, Turkiye
[3] Hokkaido Univ, Fac Engn, N13W8, Sapporo 0608628, Japan
[4] Amer Univ Middle East, Coll Engn & Technol, Egaila 54200, Kuwait
关键词
Mixed ion-electron conductors; Electrode materials; Energy storage; Solid-state batteries; OXIDE FUEL-CELLS; PROMISING ANODE MATERIAL; INTERPHASE FORMATION; LIQUID-PHASE; METAL ANODE; ELECTROCHEMICAL PROPERTIES; PEDOT PSS; CATHODE; STABILITY; PERFORMANCE;
D O I
10.1016/j.nantod.2024.102556
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The cathode of conventional lithium-ion batteries(LIBs) consist of three components including active materials, binders, and electron conductive agents. Binders and conductive agents, which are not directly involved in Faradaic reactions, should be minimized to incorporate more active materials into the electrode. Unlike conventional LIBs, in all-solid-state batteries(ASSBs) - considered as the next-generation batteries-, there is no liquid electrolyte to impart ionic conductivity through wetting the electrodes. Therefore, cathodes for ASSBs require both ion and electron-conducting additives to facilitate charge transport which complicates the preparation of the cathode with intimate triple contact between active material, ion conductive agent and electron conductive agent. In this perspective, mixed ion-electron conductive(MIEC) materials can be regarded as intrinsic ionelectron conductors for electrodes to ease the cathode preparation, boost gravimetric/volumetric energy density, and dig the path to monocomponent electrodes -solely active materials-. This review covers the potential of MIEC materials to be utilized as active material, binder, interlayer, and conductive scaffold to boost the electrochemical performance of solid-state LIBs. Besides, the potential of ASSBs with monocomponent electrodes was evaluated from the perspective of MIEC materials. Moreover, the feasibility of 2D structures were evaluated as MIEC materials for the ASSB electrodes. The concept of MIEC was not be confined to intrinsic MIEC materials but the materials that turned into MIEC by compositing, doping or heat-treatment were considered as MIEC materials in this study.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Assessment of all-solid-state lithium-ion batteries
    Braun, P.
    Uhlmann, C.
    Weiss, M.
    Weber, A.
    Ivers-Tiffee, E.
    JOURNAL OF POWER SOURCES, 2018, 393 : 119 - 127
  • [2] A review on 1D materials for all-solid-state lithium-ion batteries and all-solid-state lithium-sulfur batteries
    Yang, Qi
    Deng, Nanping
    Zhao, Yixia
    Gao, Lu
    Cheng, Bowen
    Kang, Weimin
    CHEMICAL ENGINEERING JOURNAL, 2023, 451
  • [3] All-Solid-State Lithium-Ion Batteries in Energy Storage for Medical Devices
    Moskal, G.
    Molenda, M.
    ACTA PHYSICA POLONICA A, 2022, 142 (03) : 405 - 407
  • [4] Review on solid electrolytes for all-solid-state lithium-ion batteries
    Zheng, Feng
    Kotobuki, Masashi
    Song, Shufeng
    Lai, Man On
    Lu, Li
    JOURNAL OF POWER SOURCES, 2018, 389 : 198 - 213
  • [5] Achieving high kinetics anode materials for all-solid-state lithium-ion batteries
    Zheng, Yuxin
    Liu, Shuo
    Zheng, Junnan
    Kang, Guojian
    Li, Yafeng
    Yang, Siman
    Wang, Jianbiao
    Yang, Ting
    Wei, Mingdeng
    JOURNAL OF ENERGY STORAGE, 2024, 100
  • [6] A bifunctional ion-electron conducting interlayer for high energy density all-solid-state lithium-sulfur battery
    Zhu, Yuewu
    Li, Jie
    Liu, Jin
    JOURNAL OF POWER SOURCES, 2017, 351 : 17 - 25
  • [7] Operando Characterization Techniques for All-Solid-State Lithium-Ion Batteries
    Strauss, Florian
    Kitsche, David
    Ma, Yuan
    Teo, Jun Hao
    Goonetilleke, Damian
    Janek, Juergen
    Bianchini, Matteo
    Brezesinski, Torsten
    ADVANCED ENERGY AND SUSTAINABILITY RESEARCH, 2021, 2 (06):
  • [8] Improved lithium-ion and electrically conductive sulfur cathode for all-solid-state lithium-sulfur batteries
    Zhang, Cheng
    Lin, Yue
    Zhu, Yuewu
    Zhang, Zhi
    Liu, Jin
    RSC ADVANCES, 2017, 7 (31): : 19231 - 19236
  • [9] Zwitterionic impetus on single lithium-ion conduction in solid polymer electrolyte for all-solid-state lithium-ion batteries
    Lua, Fei
    Li, Gaoran
    Yu, Yang
    Gao, Xinpei
    Zheng, Liqiang
    Chen, Zhongwei
    CHEMICAL ENGINEERING JOURNAL, 2020, 384
  • [10] Computation-Accelerated Design of Materials and Interfaces for All-Solid-State Lithium-Ion Batteries
    Nolan, Adelaide M.
    Zhu, Yizhou
    He, Xingfeng
    Bai, Qiang
    Mo, Yifei
    JOULE, 2018, 2 (10) : 2016 - 2046