An novel SDA-CNN few shot domain adaptation framework for silent speech recognition

被引:0
|
作者
Ramkumar N. [1 ]
Karthika Renuka D. [1 ]
机构
[1] Department of Information Technology, PSG College of Technology, Tamil Nadu, Coimbatore
来源
关键词
Brain-computer interface; Convolutional Neural Network; distribution divergence; Electroencephalography; supervised domain adaptation;
D O I
10.3233/JIFS-237890
中图分类号
学科分类号
摘要
In BCI (brain-computer interface) applications, it is difficult to obtain enough well-labeled EEG data because of the expensive annotation and time-consuming data capture procedure. Conventional classification techniques that repurpose EEG data across domains and subjects lead to significant decreases in silent speech recognition classification accuracy. This research provides a supervised domain adaptation using Convolutional Neural Network framework (SDA-CNN) to tackle this problem. The objective is to provide a solution for the distribution divergence issue in the categorization of speech recognition across domains. The suggested framework involves taking raw EEG data and deriving deep features from it and the proposed feature selection method also retrieves the statistical features from the corresponding channels. Moreover, it attempts to minimize the distribution divergence caused by variations in people and settings by aligning the correlation of both the source and destination EEG characteristic dissemination. In order to obtain minimal feature distribution divergence and discriminative classification performance, the last stage entails simultaneously optimizing the loss of classification and adaption loss. The usefulness of the suggested strategy in reducing distributed divergence among the source and target Electroencephalography (EEG) data is demonstrated by extensive experiments carried out on KaraOne datasets. The suggested method achieves an average accuracy for classification of 87.4% for single-subject classification and a noteworthy average class accuracy of 88.6% for cross-subject situations, which shows that it surpasses existing cutting-edge techniques in thinking tasks. Regarding the speaking task, the model's median classification accuracy for single-subject categorization is 86.8%, while its average classification accuracy for cross-subject classification is 87.8%. These results underscore the innovative approach of SDA-CNN to mitigating distribution discrepancies while optimizing classification performance, offering a promising avenue to enhance accuracy and adaptability in brain-computer interface applications. © 2024 - IOS Press. All rights reserved.
引用
收藏
页码:10713 / 10726
页数:13
相关论文
共 50 条
  • [1] Cross-Corpus Speech Emotion Recognition Based on Few-Shot Learning and Domain Adaptation
    Ahn, Youngdo
    Lee, Sung Joo
    Shin, Jong Won
    IEEE SIGNAL PROCESSING LETTERS, 2021, 28 : 1190 - 1194
  • [2] Few-Shot Adversarial Domain Adaptation
    Motiian, Saeid
    Jones, Quinn
    Iranmanesh, Seyed Mehdi
    Doretto, Gianfranco
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [3] PDA: Proxy-based domain adaptation for few-shot image recognition
    Liu, Ge
    Zhao, Linglan
    Fang, Xiangzhong
    IMAGE AND VISION COMPUTING, 2021, 110
  • [4] Domain adversarial adaptation framework for few-shot QoT estimation in optical networks
    Cai, Zhuojun
    Wang, Qihang
    Deng, Yubin
    Zhang, Peng
    Zhou, Gai
    Li, Yang
    Khan, Faisal Nadeem
    JOURNAL OF OPTICAL COMMUNICATIONS AND NETWORKING, 2024, 16 (11) : 1133 - 1144
  • [5] Marginalized Augmented Few-Shot Domain Adaptation
    Jing, Taotao
    Xia, Haifeng
    Hamm, Jihun
    Ding, Zhengming
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (09) : 12459 - 12469
  • [6] Few-Shot Domain Adaptation with Polymorphic Transformers
    Li, Shaohua
    Sui, Xiuchao
    Fu, Jie
    Fu, Huazhu
    Luo, Xiangde
    Feng, Yangqin
    Xu, Xinxing
    Liu, Yong
    Ting, Daniel S. W.
    Goh, Rick Siow Mong
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2021, PT II, 2021, 12902 : 330 - 340
  • [7] Supervised Domain Adaptation for Few-Shot Radar-Based Human Activity Recognition
    Li, Xinyu
    He, Yuan
    Zhang, J. Andrew
    Jing, Xiaojun
    IEEE SENSORS JOURNAL, 2021, 21 (22) : 25880 - 25890
  • [8] Hashing in the zero shot framework with domain adaptation
    Pachori, Shubham
    Deshpande, Ameya
    Raman, Shanmuganathan
    NEUROCOMPUTING, 2018, 275 : 2137 - 2149
  • [9] A statistical framework for few-shot action recognition
    Haddad, Mark
    Ghassab, Vahid K.
    Najar, Fatma
    Bouguila, Nizar
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (16) : 24303 - 24318
  • [10] A statistical framework for few-shot action recognition
    Mark Haddad
    Vahid K. Ghassab
    Fatma Najar
    Nizar Bouguila
    Multimedia Tools and Applications, 2021, 80 : 24303 - 24318