Few-Shot Domain Adaptation with Polymorphic Transformers

被引:11
|
作者
Li, Shaohua [1 ]
Sui, Xiuchao [1 ]
Fu, Jie [2 ]
Fu, Huazhu [3 ]
Luo, Xiangde [4 ]
Feng, Yangqin [1 ]
Xu, Xinxing [1 ]
Liu, Yong [1 ]
Ting, Daniel S. W. [5 ]
Goh, Rick Siow Mong [1 ]
机构
[1] ASTAR, Inst High Performance Comp, Singapore, Singapore
[2] Univ Montreal, Mila, Montreal, PQ, Canada
[3] Incept Inst Artificial Intelligence, Abu Dhabi, U Arab Emirates
[4] Univ Elect Sci & Technol China, Chengdu, Peoples R China
[5] Singapore Eye Res Inst, Singapore, Singapore
关键词
Transformer; Domain adaptation; Few-shot;
D O I
10.1007/978-3-030-87196-3_31
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep neural networks (DNNs) trained on one set of medical images often experience severe performance drop on unseen test images, due to various domain discrepancy between the training images (source domain) and the test images (target domain), which raises a domain adaptation issue. In clinical settings, it is difficult to collect enough annotated target domain data in a short period. Few-shot domain adaptation, i.e., adapting a trained model with a handful of annotations, is highly practical and useful in this case. In this paper, we propose a Polymorphic Transformer (Polyformer), which can be incorporated into any DNN backbones for few-shot domain adaptation. Specifically, after the polyformer layer is inserted into a model trained on the source domain, it extracts a set of prototype embeddings, which can be viewed as a "basis" of the source-domain features. On the target domain, the polyformer layer adapts by only updating a projection layer which controls the interactions between image features and the prototype embeddings. All other model weights (except BatchNorm parameters) are frozen during adaptation. Thus, the chance of overfitting the annotations is greatly reduced, and the model can perform robustly on the target domain after being trained on a few annotated images. We demonstrate the effectiveness of Polyformer on two medical segmentation tasks (i.e., optic disc/cup segmentation, and polyp segmentation). The source code of Polyformer is released at https://github.com/askerlee/segtran.
引用
收藏
页码:330 / 340
页数:11
相关论文
共 50 条
  • [1] Few-Shot Adversarial Domain Adaptation
    Motiian, Saeid
    Jones, Quinn
    Iranmanesh, Seyed Mehdi
    Doretto, Gianfranco
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [2] Marginalized Augmented Few-Shot Domain Adaptation
    Jing, Taotao
    Xia, Haifeng
    Hamm, Jihun
    Ding, Zhengming
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (09) : 12459 - 12469
  • [3] Domain Adaptation Algorithm for Few-Shot Classification Task
    Dai H.
    Hao X.-T.
    Sheng L.-J.
    Miao Q.-G.
    Jisuanji Xuebao/Chinese Journal of Computers, 2022, 45 (05): : 935 - 950
  • [4] VARIATIONAL FEATURE DISENTANGLEMENT FOR FEW-SHOT DOMAIN ADAPTATION
    Wang, Weiduo
    Gu, Yun
    Yang, Jie
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 2860 - 2864
  • [5] Domain consensual contrastive learning for few-shot universal domain adaptation
    Liao, Haojin
    Wang, Qiang
    Zhao, Sicheng
    Xing, Tengfei
    Hu, Runbo
    APPLIED INTELLIGENCE, 2023, 53 (22) : 27191 - 27206
  • [6] Domain consensual contrastive learning for few-shot universal domain adaptation
    Haojin Liao
    Qiang Wang
    Sicheng Zhao
    Tengfei Xing
    Runbo Hu
    Applied Intelligence, 2023, 53 : 27191 - 27206
  • [7] Domain Re-Modulation for Few-Shot Generative Domain Adaptation
    Wu, Yi
    Li, Ziqiang
    Wang, Chaoyue
    Zheng, Heliang
    Zhao, Shanshan
    Li, Bin
    Tao, Dacheng
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [8] SelectNAdapt: Support Set Selection for Few-Shot Domain Adaptation
    Dawoud, Youssef
    Carneiro, Gustavo
    Belagiannis, Vasileios
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS, ICCVW, 2023, : 973 - 982
  • [9] Few-Shot Domain Adaptation for Identification of Clinical Image in Dermatology
    Jing H.
    Zhang Q.
    Chen M.
    Zhang L.
    Li Z.
    Zhu J.
    Li Z.
    Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University, 2020, 54 (09): : 142 - 148and156
  • [10] Augmenting and Aligning Snippets for Few-Shot Video Domain Adaptation
    Xu, Yuecong
    Yang, Jianfei
    Zhou, Yunjiao
    Chen, Zhenghua
    Wu, Min
    Li, Xiaoli
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 13399 - 13410