Integrated Embedded system for detecting diabetes mellitus using various machine learning techniques

被引:0
|
作者
Konda R. [1 ]
Ramineni A. [1 ]
Jayashree J. [1 ]
Singavajhala N. [2 ]
Vanka S.A. [3 ]
机构
[1] School of Computer Science and Engineering (SCOPE), VIT University, Tamil Nadu, Katpadi
[2] Mechanical Engineering, Vasavi College of Engineering, Telangana, Hyderabad
[3] Information Technology, Vasavi College of Engineering, Telangana, Hyderabad
关键词
Embedded Technique; Machine Learning; Mellitus; SGN Algorithm;
D O I
10.4108/eetpht.10.5497
中图分类号
学科分类号
摘要
INTRODUCTION: The goal of this study, titled ”Integrated System for Detecting Diabetes Mellitus using Various Machine Learning and Deep Learning Algorithms,” is to increase the precision and usability of diabetes diagnosis through the investigation and application of a wide range of machine learning and deep learning techniques. OBJECTIVES: The objective of the study was to establish a comprehensive system for identifying diabetes mellitus by combining several machine learning and deep learning methods METHODS: The methodology included every phase, from data gathering and preprocessing through advanced model development and performance assessment. The experiment demonstrated how combining several machine learning and deep learning techniques might completely transform diabetes detection. While praising accomplishments, the methodology also highlighted flaws in the data collection process. The goal of the roadmap for future improvements was to use technology to better detect and treat diabetes, which would ultimately help people of all ages and backgrounds. RESULTS: The project’s remarkable results demonstrate the legitimacy of the methodology chosen while also highlighting its potential to completely transform the diagnosis and treatment of diabetes CONCLUSION: The conclusion of this project lays the ground for next developments, such as improved user interfaces and the expansion of dataset scope. Through these initiatives, the long-term objective of providing more precise and accessible diabetes diagnoses becomes a real possibility, providing significant advantages to people from a variety of age groups and demographics[6]. © 2024 R. Konda et al., licensed to EAI.
引用
下载
收藏
相关论文
共 50 条
  • [11] Early diagnosis of diabetes mellitus using data mining and machine learning techniques
    Deepa, K.
    Kumar, C. Ranjeeth
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 44 (03) : 3999 - 4011
  • [12] A Predictive Model for Diabetes Mellitus Using Machine Learning Techniques (A Study in Nigeria)
    Evwiekpaefe, Abraham Eseoghene
    Abdulkadir, Nafisat
    AFRICAN JOURNAL OF INFORMATION SYSTEMS, 2023, 15 (01):
  • [13] Machine Learning Techniques for Diabetes Mellitus Based on Lifestyle Predictors
    Ansari, Gufran Ahmad
    Bhat, Salliah Shafi
    Ansari, Mohd Dilshad
    RECENT ADVANCES IN ELECTRICAL & ELECTRONIC ENGINEERING, 2024,
  • [14] Detecting Crop Health using Machine Learning Techniques in Smart Agriculture System
    Shukla, Rati
    Dubey, Gaurav
    Malik, Pooja
    Sindhwani, Nidhi
    Anand, Rohit
    Dahiya, Aman
    Yadav, Vikash
    JOURNAL OF SCIENTIFIC & INDUSTRIAL RESEARCH, 2021, 80 (08): : 699 - 706
  • [15] Detecting Textual Propaganda Using Machine Learning Techniques
    Khanday, Akib Mohi Ud Din
    Khan, Qamar Rayees
    Rabani, Syed Tanzeel
    BAGHDAD SCIENCE JOURNAL, 2021, 18 (01) : 199 - 209
  • [16] Detecting Suspicious Texts Using Machine Learning Techniques
    Sharif, Omar
    Hoque, Mohammed Moshiul
    Kayes, A. S. M.
    Nowrozy, Raza
    Sarker, Iqbal H.
    APPLIED SCIENCES-BASEL, 2020, 10 (18):
  • [17] Detecting BGP Anomalies Using Machine Learning Techniques
    Ding, Qingye
    Li, Zhida
    Batta, Prerna
    Trajkovic, Ljiljana
    2016 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2016, : 3352 - 3355
  • [18] Detecting Lung Cancer Using Machine Learning Techniques
    Dutta, Ashit Kumar
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2022, 31 (02): : 1007 - 1023
  • [19] Detecting Malicious URLs using Machine Learning Techniques
    Vanhoenshoven, Frank
    Napoles, Gonzalo
    Falcon, Rafael
    Vanhoof, Keen
    Koppen, Mario
    PROCEEDINGS OF 2016 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2016,
  • [20] Predicting Diabetes Using Machine Learning Techniques
    Kirgil, Elif Nur Haner
    Erkal, Begum
    Ayyildiz, Tulin Ercelebi
    2022 INTERNATIONAL CONFERENCE ON THEORETICAL AND APPLIED COMPUTER SCIENCE AND ENGINEERING (ICTASCE), 2022, : 137 - 141