Multi-Global Navigation Satellite System for Earth Observation: Recent Developments and New Progress

被引:0
|
作者
Jin, Shuanggen [1 ,2 ]
Meng, Xuyang [1 ]
Dardanelli, Gino [3 ]
Zhu, Yunlong [1 ]
机构
[1] Henan Polytech Univ, Sch Surveying & Land Informat Engn, Jiaozuo 454003, Peoples R China
[2] Chinese Acad Sci, Shanghai Astron Observ, Shanghai 200030, Peoples R China
[3] Univ Palermo, Dept Engn, Viale Sci, I-90128 Palermo, Italy
基金
中国国家自然科学基金;
关键词
GNSS; geohazards; GNSS meteorology; GNSS ionosphere; GNSS-reflectometry; GNSS; GPS; PERFORMANCE;
D O I
10.3390/rs16244800
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The Global Navigation Satellite System (GNSS) has made important progress in Earth observation and applications. With the successful design of the BeiDou Navigation Satellite System (BDS), four global navigation satellite systems are available worldwide, together with Galileo, GLONASS, and GPS. These systems have been widely employed in positioning, navigation, and timing (PNT). Furthermore, GNSS refraction, reflection, and scattering signals can remotely sense the Earth's surface and atmosphere with powerful implications for environmental remote sensing. In this paper, the recent developments and new application progress of multi-GNSS in Earth observation are presented and reviewed, including the methods of BDS/GNSS for Earth observations, GNSS navigation and positioning performance (e.g., GNSS-PPP and GNSS-NRTK), GNSS ionospheric modelling and space weather monitoring, GNSS meteorology, and GNSS-reflectometry and its applications. For instance, the static Precise Point Positioning (PPP) precision of most MGEX stations was improved by 35.1%, 18.7%, and 8.7% in the east, north, and upward directions, respectively, with PPP ambiguity resolution (AR) based on factor graph optimization. A two-layer ionospheric model was constructed using IGS station data through three-dimensional ionospheric model constraints and TEC accuracy was increased by about 20-27% with the GIM model. Ten-minute water level change with centimeter-level accuracy was estimated with ground-based multiple GNSS-R data based on a weighted iterative least-squares method. Furthermore, a cyclone and its positions were detected by utilizing the GNSS-reflectometry from the space-borne Cyclone GNSS (CYGNSS) mission. Over the years, GNSS has become a dominant technology among Earth observation with powerful applications, not only for conventional positioning, navigation and timing techniques, but also for integrated remote sensing solutions, such as monitoring typhoons, river water level changes, geological geohazard warnings, low-altitude UAV navigation, etc., due to its high performance, low cost, all time and all weather.
引用
收藏
页数:23
相关论文
共 50 条
  • [41] INSTITUTIONAL REQUIREMENTS FOR A GLOBAL NAVIGATION SATELLITE SYSTEM
    BLANCHARD, WF
    BROUGHTON, DW
    JOURNAL OF NAVIGATION, 1995, 48 (02): : 249 - 255
  • [42] Galileo - The European Global Navigation Satellite System
    Grohe, R.
    PROCEEDINGS OF THE 19TH INTERNATIONAL TECHNICAL MEETING OF THE SATELLITE DIVISION OF THE INSTITUTE OF NAVIGATION (ION GNSS 2006), 2006, : 9 - 17
  • [43] CYGNSS: Cyclone Global Navigation Satellite System
    Ruf, Chris
    PROCEEDINGS OF THE 31ST INTERNATIONAL TECHNICAL MEETING OF THE SATELLITE DIVISION OF THE INSTITUTE OF NAVIGATION (ION GNSS+ 2018), 2018, : 3689 - 3703
  • [44] Global capabilities of BeiDou Navigation Satellite System
    Lu, Jun
    Guo, Xia
    Su, Chengeng
    SATELLITE NAVIGATION, 2020, 1 (01):
  • [45] Robot positioning and the global navigation satellite system
    Ashkenazi, V
    Park, D
    Dumville, M
    INDUSTRIAL ROBOT, 2000, 27 (06): : 419 - 426
  • [46] Antennas for Global Navigation Satellite System (GNSS)
    Wang, Johnson J. H.
    PROCEEDINGS OF THE IEEE, 2012, 100 (07) : 2349 - 2355
  • [47] Institutional aspects of a Global Navigation Satellite System
    Brocklebank, D
    Spiller, J
    Tapsell, T
    JOURNAL OF NAVIGATION, 2000, 53 (02): : 261 - 271
  • [48] GPS and global navigation satellite system (GLONASS)
    Daly, Peter
    Misra, Pratap N.
    Progress in Astronautics and Aeronautics, 164
  • [49] Global Navigation Satellite System-Reflections
    Soulat, F.
    Farres, E.
    Dunne, S.
    Germain, O.
    Martin, C.
    Martinez, M.
    Caparrini, M.
    Ruffini, G.
    REVISTA DE TELEDETECCION, 2006, (25): : 153 - 157
  • [50] PREFACE: Global navigation satellite systems: Recent scientific advances
    Arias, Elisa Felicitas
    ADVANCES IN SPACE RESEARCH, 2024, 74 (06)