Robust method for clustering arbitrarily-shaped clusters based on labeling by ascending order distance between clusters

被引:1
|
作者
Imamura, Hiroki [1 ,2 ]
Fujimura, Makoto [1 ,2 ]
Kuroda, Hideo [1 ,2 ]
机构
[1] Dept. of Computer and Information Sciences, Nagasaki University, 1-14, Bunkyou-mach, Nagasaki City, 852-8521
[2] Graduate School of Science and Technorogy, Nagasaki University, 1-14, Bunkyou-mach, Nagasaki City, 852-8521
来源
Kyokai Joho Imeji Zasshi/Journal of the Institute of Image Information and Television Engineers | 2006年 / 60卷 / 04期
关键词
Database systems;
D O I
10.3169/itej.60.618
中图分类号
学科分类号
摘要
引用
收藏
页码:618 / 620
相关论文
共 50 条
  • [31] A proximity-based graph clustering method for the identification and application of transcription factor clusters
    Maxwell Spadafore
    Kayvan Najarian
    Alan P. Boyle
    BMC Bioinformatics, 18
  • [32] A Dependence Clusters Detection Method Based on Higher-Order Function Summary
    Yang J.-Y.
    Zhang Y.-Z.
    Li J.-F.
    Ma R.
    Wang Q.-S.
    Xue Y.-C.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2024, 52 (04): : 1337 - 1348
  • [33] A Fast Method for Estimating the Number of Clusters Based on Score and the Minimum Distance of the Center Point
    He, Zhenzhen
    Jia, Zongpu
    Zhang, Xiaohong
    INFORMATION, 2020, 11 (01)
  • [34] A robust kernel-based fuzzy local neighborhood clustering with quadratic polynomial-center clusters
    Wu, Chengmao
    Wang, Zeren
    DIGITAL SIGNAL PROCESSING, 2021, 118
  • [35] Method for Inferring the Optimal Number of Clusters with Subsequent Automatic Data Labeling based on Standard Deviation
    Silva, Aline Montenegro Leal
    Sousa, Francisco Alysson da Silva
    Santos, Alysson Ramires de Freitas
    Machado, Vinicius Ponte
    Santana, Andre Macedo
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (03) : 899 - 908
  • [36] Evaluation of an ensemble-based distance statistic for clustering MLST datasets using epidemiologically defined clusters of cyclosporiasis
    Nascimento, Fernanda S.
    Barratt, Joel
    Houghton, Katelyn
    Plucinski, Mateusz
    Kelley, Julia
    Casillas, Shannon
    Bennett, Carolyne
    Snider, Cathy
    Tuladhar, Rashmi
    Zhang, Jenny
    Clemons, Brooke
    Madison-Antenucci, Susan
    Russell, Alexis
    Cebelinski, Elizabeth
    Haan, Jisun
    Robinson, Trisha
    Arrowood, Michael J.
    Talundzic, Eldin
    Bradbury, Richard S.
    Qvarnstrom, Yvonne
    EPIDEMIOLOGY AND INFECTION, 2020, 148
  • [37] A New Incremental Growing Neural Gas Algorithm Based on Clusters Labeling Maximization: Application to Clustering of Heterogeneous Textual Data
    Lamirel, Jean-Charles
    Boulila, Zied
    Ghribi, Maha
    Cuxac, Pascal
    TRENDS IN APPLIED INTELLIGENT SYSTEMS, PT III, PROCEEDINGS, 2010, 6098 : 139 - +
  • [38] An entropy-based initialization method of K-means clustering on the optimal number of clusters
    Kuntal Chowdhury
    Debasis Chaudhuri
    Arup Kumar Pal
    Neural Computing and Applications, 2021, 33 : 6965 - 6982
  • [39] An entropy-based initialization method of K-means clustering on the optimal number of clusters
    Chowdhury, Kuntal
    Chaudhuri, Debasis
    Pal, Arup Kumar
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (12): : 6965 - 6982
  • [40] A hierarchical Clustering Method Based on PCA-Clusters Merging for Quasi-linear SVM
    Yang, Cheng
    Yang, Keshi
    Zhou, Bo
    PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON AUTOMATION, MECHANICAL CONTROL AND COMPUTATIONAL ENGINEERING, 2015, 124 : 2270 - 2276